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A B S T R A C T   

Periodate oxidation has been the widely accepted route for obtaining aldehyde group-functionalized poly
saccharides but significantly influenced the various physicochemical properties due to the ring opening of the 
backbone of polysaccharides. The present study, for the first time, presents a novel method for the preparation of 
aldehyde group-functionalized polysaccharides that could retain the ring structure and the consequent rigidity of 
the backbone. Pectin was collected as the representative of polysaccharides and modified with cyclopropyl 
formaldehyde to obtain pectin aldehyde (AP), which was further crosslinked by DL-lysine (LYS) via the Schiff 
base reaction to prepare injectable hydrogel. The feasibility of the functionalization was proved by FT-IR and 1H 
NMR techniques. The obtained hydrogel showed acceptable mechanical properties, self-healing ability, syrin
geability, and sustained-release performance. Also, as-prepared injectable hydrogel presented great biocom
patibility with a cell proliferation rate of 96 %, and the drug-loaded hydrogel exhibited clear inhibition of cancer 
cell proliferation. Overall, the present study showed a new method for the preparation of aldehyde group- 
functionalized polysaccharides, and the drug-loaded hydrogel has potential in drug release applications.   

1. Introduction 

Tumor is a malignant disease threatening human health. Currently, 
the main treatment methods for tumors include surgical resection, 
chemotherapy, and radiotherapy [1]. Among them, chemotherapy is a 
conventional treatment method that plays an essential and irreplaceable 
role in tumor treatment [2,3]. During chemotherapy, the cancer cells 
and normal cells are simultaneously damaged, resulting in apparent side 
effects [3]. Many candidate compounds or drugs currently developed or 
used for clinical tumor therapy have many problems, which cannot fully 
meet the clinical needs of tumor therapy, including strong hydropho
bicity, low bioavailability, instability, large toxicity and side effects, lack 
of targeting, etc. [4–7]. Therefore, the approaches that can overcome the 
abovementioned disadvantages need to be developed and have attracted 
a surge of interest. Drug delivery systems can effectively reduce the 
release rate of drugs in the human body and prolong the release time, 
thus significantly improving the efficacy and safety of drugs. 

Hydrogel, a three-dimensional polymer network, is considered a 
“solid” material with micro-scale fluidity and, therefore, has been 
developed as an effective carrier for delivering drugs, which showed 
excellent potential in drug delivery applications, as well as the studies of 
diagnosis, chemotherapy, and tissue engineering [8,9]. Conventional 

hydrogels are generally used as oral drug delivery carriers which 
improved the disadvantages such as bioavailability, sustained-release 
performance, and biocompatibility as the result of the strong chemical 
crosslinking that endows hydrogel with acceptable mechanical strength. 
However, the swelling behaviour of hydrogel in the digestive tract in
duces inevitable damage to the loaded drugs [10]. 

Injectable hydrogels are an important branch of hydrogel. Compared 
with conventional hydrogels, subcutaneous implantation of drug-loaded 
injectable hydrogels can facilely achieve the purposes, including local 
and site-specific effects, long administration time, and small dosage 
[11,12]. It has become the research hotspot of drug delivery applications 
for tumor treatment [13]. Many polysaccharides have been used to 
prepare injectable hydrogels-based drug delivery systems due to their 
cytocompatibility, degradability, low toxicity and stability, such as 
cellulose, sodium alginate, chitosan, and pectin [14–19]. Fluidity is an 
important index for an injectable hydrogel to present the syringeability 
but is limited by the strong chemical crosslinking of the polysaccharide- 
based hydrogel. If the polysaccharides-based hydrogels have self- 
healing properties, they can still retain the various performances of 
hydrogel after the destruction in the process of injection [20]. Dynamic 
covalent bonds have been widely employed to form hydrogels with self- 
healing properties, which can be obtained via the Schiff base reaction, 
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Diels-Alder reaction, etc. [21–24]. Thereinto, the Schiff base reaction 
seems to be the most appropriate route, because almost all the poly
saccharides have vicinal diols that can be selectively oxidized to dia
ldehydes by periodate oxidation. Moreover, other part of feedstocks has 
the advantage of a wide range of sources, such as protein, amino acids, 
chitosan, polyvinylimide, and hydrazines [25–28]. However, the ring- 
opening reaction significantly reduces the rigidity of the backbone of 
polysaccharides, going against the mechanical strength of the hydrogels 
[29]. 

A facile route that can prepare the aldehyde-functionalized poly
saccharides without broking the vicinal diols may retain the consequent 
rigidity of the backbone, resulting in a higher mechanical strength than 
the hydrogels from periodate oxidized polysaccharides. Thus, we pre
pared aldehyde group pendant-grafted pectin (AP) via etherification 
under alkaline conditions. In the present study, pectin was collected as 
the representative due to positive physiological effects, and cyclopropyl 
formaldehyde was used as the etherifying agent. The feasibility of 
etherification was proved by the FT-IR and 1H NMR techniques. The AP 
was further crosslinked by DL-lysine (LYS) to prepare hydrogels via 
Schiff base reaction. The microstructure, gelation behaviour, mechani
cal strength, self-healing performance, and cytocompatibility were 
calculated. Also, the 5-fluorouracil (5-FU) was loaded on the hydrogel, 
and the sustained-release performance and the inhibitors of cancer cell 
growth were also determined. The present study showed the significance 
of the novel preparation route of aldehyde-functionalized pectin, and 
the injectable hydrogel presented excellent potential in drug delivery 
applications. What's more, this route for aldehyde functionalization can 
be popularized to all other polysaccharides to obtaine polysaccharide- 
based hydrogels, films, matrix, etc. 

2. Materials and methods 

2.1. Materials 

Pectin with an average molecular weight of 37.2 kDa and a degree of 
esterification of 27.3 % was purchased from Macklin Biochemical 

Technology Co., Ltd. (Shanghai, China). NaOH was acquired from 
Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China). Cyclopropyl 
formaldehyde was obtained from Aladdin Biochemical Technology Co., 
Ltd. (Shanghai, China). DL-lysine was acquired from Heowns 
Biochemical Technology Co., Ltd. (Tianjin, China). 

2.2. Preparation of aldehyde group pendant-grafted pectin (AP) 

The reaction scheme of AP is shown in Fig. 1A. Five grams of pectin 
was dispersed in 300 mL of NaOH solution (10 wt%) with stirring for 1 h 
at 300 rpm to make pectin evenly dissolve. Then, 5 mL of cyclopropyl 
formaldehyde was dropwise added into the pectin solution in 2 min, and 
the reflux reaction was maintained at 50 ◦C for 6 h, followed by 
adjusting the pH of the reaction system to 6–8 with acetic acid. Finally, 
centrifugation (10,000 rpm), washing (ethanol solution, 90 wt%, 3 
times), and freeze-drying (− 40 ◦C) were continuously performed to 
obtain the AP. 

2.3. Preparation of AP-LYS injectable hybrid hydrogels 

Hydrogels were prepared by Schiff base reaction using AP as raw 
material and LYS as crosslinker. The reaction and preparation diagram 
of the hydrogel are shown in Fig. 1B and Fig. 1C, respectively. AP and 
LYS were dissolved in deionized water to obtain the AP and LYS solu
tions with concentrations of 10 wt% and 20 wt%, respectively. The as- 
prepared solutions were mixed according to the mass ratio of AP to 
LYS of 1: 1, 1: 2, and 2: 1. Then, the pH of mixed systems were adjusted 
to 8, stirred at 300 rpm for 2 h, and aged at 60 ◦C for another 3 h. Finally, 
the as-prepared hydrogels were stood at room temperature for 5 h. The 
obtained hydrogels were named AP1-LYS1, AP1-LYS2, and AP2-LYS1 
according to the different ratios of AP to LYS. 

2.4. Characterization 

Pectin, AP, and the obtained hydrogels were characterized by 
Fourier transform infrared (FT-IR) spectroscopy. Pectin and AP were 

Fig. 1. The scheme of the reaction: (A) Scheme of AP preparation; (B) Scheme of hydrogel preparation; (C) Diagram of preparation of hydrogel.  
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also characterized by the proton nuclear magnetic resonance (1H NMR) 
technique) performed on an AVANCE III 600 NMR spectrometer 
(Bruker, Germany). The micromorphology of the as-prepared hydrogels 
were screened by a scanning electron microscope (SEM, Hitachi S-4800, 
Japan). Also, we determined the gelation times of the AP-LYS injectable 
hybrid hydrogels by the tube-inversion method at room temperature. 
Mechanical properties and self-healing performances of the AP-LYS 
hydrogels were determined by rheological analysis on a rheometer 
(MCR302, Anton Paar, Austria) with a parallel plate geometry. In 
addition, the self-healing performances were also obtained via the 
macroscopic self-healing tests. pH-responsiveness property of hydrogels 
were calculated on an UV–Vis spectroscopy. The in vitro sustained 
release performace of the 5-FU-loaded hydrogel were calculated in the 
PBS solutions with pH of 6.8 and 7.4. The cytocompatibility of hydrogel 
was determined by the MTT assay, during which the L929 cell was 
employed and the fluorogram was obtained by IX71 fluorescence mi
croscopy (Olympus Corporation, Japan). Also, the MCF-7 cell lines were 
used to calculate the inhibitory effect on cancer cells by the MTT assay 
test. The detailed operations are shown in the Supporting Information. 

3. Results and discussions 

3.1. Characterization 

Fig. 2A shows the FT-IR spectrums of pectin, AP, and the resultant 
hydrogel. It can be seen from the pectin spectrum that the characteristic 
peaks of the stretching vibrations of O–H and C-OH were located at 
3400 cm− 1 and 1076 cm− 1, respectively. Moreover, the stretching vi
brations of C––O in the methyl ester and carboxylate can be found at 
1745 cm− 1 and 1631 cm− 1. In the AP spectrum, the peak at 1745 cm− 1 

disappeared, indicating the hydrolyzation of the ester group under 
alkaline conditions. More importantly, two peaks were generated in the 
range of 2830–2720 cm− 1, which were ascribed to the stretching vi
bration peak of aldehyde groups. We can also find that the peak at 1631 
cm− 1 shifted to 1600 cm− 1, which may be induced by the aldehyde-enol 
tautomerism [26]. In comparison, the characteristic peaks of aldehyde 
have disappeared, and the peak pattern of hydroxyl groups has been 
unsymmetrical, indicating the generation of imine via Schiff base 
reaction. 

This modification of pectin via the etherification reaction was first 
reported, and thus, we performed the 1H NMR characterization to 
further prove the feasibility of this route. Fig. 2B shows the spectra of 
pectin and AP. The signals at 5.08 ppm, 4.65 ppm, 4.21 ppm, 4.06 ppm, 
and 3.82 ppm were responsible for the H1, H5, H4, H3, and H2 protons, 
respectively [30]. Moreover, some signals did not ascribe to the gal
acturonic acid can be found at 5.41 ppm, 2.11 ppm, and 1.19 ppm were 
the signals of H1 of rhamnose, acetyl groups that are binding at 3-O 
galacturonic acid, and methyl groups of L-rhamnose [31,32]. In the 
characterization of AP, the MA that possessed two olefin protons was 
used as the internal standard, which signal can be found at 6.29 ppm. 
The generated signal at 2.23 ppm is the methylene proton originating 
from the ring-open reaction of cyclopropyl. Also, we calculated the 
content of the aldehyde group from Eq. 1 and obtained a result of 0.758 
mmol/g. 

3.2. Micromorphology of the as-prepared hydrogels 

The chemical crosslinked hydrogels can form pore structures that 
were the storage location for the drug models [33]. Thus, we performed 
SEM characterization of lyophilized hydrogels to observe their 
morphology (Fig. 3). It is clear that all the lyophilized hydrogels pre
sented a three-dimensional network structure with inhomogeneous 
pores that were expressed in the aperture diameter. This phenomenon 
may be due to the rapid and nonselective electrostatic attractions be
tween the carboxyl groups and amidogen that induced the uneven dis
tribution of LYS on AP. However, the three-dimensional network 
structure endowed the as-prepared hydrogels with encapsulation capa
bility to drugs, as well as sustained release. Compared with the other two 
samples, AP2-LYS1 had a more pore pile structure and the aperture were 
smaller that contribute to the adsorption toward drug molecules. As a 
result, the AP2-LYS1 may show the best sustained release performance. 

3.3. Determination of gelation time 

Gelation time is an essential aspect of the availability of hydrogels as 
biomaterials. The macroscopical gelation is shown in Fig. 4A, and the 
gelation times are shown in Fig. 4B. It can be seen that the gelation time 
increases with the decrease in AP content, indicating that the more 

Fig. 2. Chemical characterization: (A) FT-IR spectra of the pectin, AP, and the resultant hydrogel; (B) quantitative 1H NMR spectroscopy for pectin and AP.  
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Fig. 3. SEM images (×1000) of the lyophilized hydrogels at different proportions: (A) AP1-LYS1; (B) AP1-LYS2; (C) AP2-LYS1.  

Fig. 4. Gelation process of the as-prepared hydrogels: (A) images of the gelation process; (B) Gelation time of hydrogels at different proportions.  

Fig. 5. Rheology and self-healing properties of the injectable hydrogels: (A) strain sweep test; (B) frequency sweep test; (C) continuous step-strain measurements of 
the hydrogel; (D) schematic diagram of the self-healing mechanism; (E-G) the macroscopical injectability test of AP1-LYS2. 
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content of the aldehyde group contributed to the gelation. In other 
words, the high content of aldehyde groups is conducive to the effective 
collision of chemical reactions, viz. the Schiff base reaction. Also, we 
recorded videos about the gelation of oxidized pectin-LYS. It is clear the 
oxidized pectin cannot be crosslinked by LYS and the mixture always 
maintain the fluidity of the liquid (Supporting Information, S2). These 
results indicated that the AP was more likely to form a hydrogel 
compared with oxidized pectin, because the AP retained the ring 
structure in the skeleton. Kratchanova et al. studied the chemical re
actions and physical interaction of pectin in the prensence of amino 
acids and other amino compounds [34]. Results declared the chemical 
reactions (e.g., amidation, esterolysis, and degradation) and physical 
interactions (i.e., electrostatic interaction). Thus, we also prepared 
pectin-LYS composites that behaved as a fluid, indicating the inappli
cability as the drug delivery carrier (Supporting Information, S3). All the 
results proven the significance of PA in formation of hydrogel with 
polyamino compounds. 

3.4. Mechanical properties of hydrogels 

The chemical crosslinking contributed to the forming of the pore 
structure of a hydrogel and also influenced the mechanical properties. 
Generally, a chemically crosslinked hydrogel presented high mechanical 
properties but delayed the degradation. Thus, the mechanical properties 
cannot be high for an injectable hydrogel. The present study showed the 
results of mechanical properties (i.e., storage modulus (G') and loss 
modulus (G")) obtained from the rheology of the as-prepared hydrogels 
under different conditions. 

Fig. 5A is the results of the strain sweep test on AP1-LYS1, AP1-LYS2, 
and AP2-LYS1. In the low strain range, the G' was much more significant 
than G" of the as-prepared hydrogels, and the modulus showed slight 
change, indicating that hydrogels have elastic behavior and solid-like 
properties at this time. With the increase in the strain, the G' curves 
and G" curves intersected, which indicated the collapse of the hydrogel 
network and a gel-sol transition [35]. Moreover, the initial G' was much 
higher than that of the pectin-based physical hydrogels [15,16,36–38], 
indicating the positive role of chemical crosslinking in mechanical 
strength. 

Fig. 5B shows the G' and G" of the hydrogel as a function of frequency 
(ω) at 0.2% strain. All the as-prepared hydrogels also behave as G' > G", 
showing the dominant role of elastic module rather than viscous module 
in these injectable systems. Compared with the full pectin-based 
injectable hydrogel [27], the G' and G" of present hydrogels all 
showed stability to the frequency, which indicated the well crosslinking. 
Moreover, the three injectable hydrogels expressed significant differ
ences in the G', viz., the G' of AP1-LYS2 was high above 10,000 Pa, and 
the G' of AP2-LYS1 was only 100 Pa, which manifested the LYS dosage 
contributed to the higher G' of the hydrogels. 

3.5. The self-healing performance of the hydrogel 

The self-healing performance of hydrogel was also studied, as shown 
in Fig. 5C. The G' was lower than G" at high strain (20%) and G' was 
higher than G" at low strain (0.2 %). Additionally, the G' could rapidly 
recover to the original value when the oscillating pressure switched 
from 20 % to 0.2 %. This result indicated the well self-healing properties 
of AP1-LYS2. The self-healing performance of the AP1-LYS2 was also 
determined via the macroscopic test, and the results are shown in 
Fig. 5D. It is clear that the two parts of the hydrogels have well self- 
healed and can be pulled by tweezers without fissuration. Also, we 
could find that the unstained part changed to blue via diffusion based on 
the concentration gradient of methylene blue. The chopped hydrogels 
likewise stuck together. All these results manifested the great self- 
healing performance of the hydrogel. 

The injection process can be divided into two steps, viz. the failure 
and self-healing stages. If a hydrogel had great syringeability, it would 

still remain round appearance when it was extruded from the injector. It 
is clear the hydrogel could be facilely injected from the needle (0.45 
mm) and expressed a round appearance without breakage. Moreover, 
the “XJAU” can be written smoothly on the glass plate, which did not 
show fluidity when the glass was put up. When the hydrogel was 
injected from the needle, the dynamic imine linkage may be broken, 
followed by resynthesis from the generated amine and aldehyde groups 
[39]. 

3.6. pH-responsiveness of hydrogels 

As a drug delivery carrier, the stimulus-responsivenesses of the as- 
prepared hydrogel are expectant, such as the thermo- and pH-stimulus 
responsiveness. The UV–Vis spectra can be used to detecte the change 
of electron cloud density under different conditions, and the wave
lengths of maximum absorbance were generally used as a criteria. Here, 
we calculated the pH-stimulus responsiveness by measuring the wave
lengths of maximum absorbance, and the results are shown in Fig. 6. 

The dynamic imine linkages showed differences in stability at media 
with different pH. Pectin, an anionic polysaccharide, also possessed 
abundant carboxyl groups and consequently present pH-responsiveness. 
The changes in of maximum absorbance wavelengths are shown in 
Fig. 6A. It is clear the wavelength significantly shifted with adjusting the 
pH of the media, indicating the pH-responsiveness of the as-prepared 
hydrogels. Imines generally stabilize in the near-neutral and diluent 
basic media and hydrolyzed under acidic conditions [40]. In detail, the 
hydrolyzation of imines rapidly occurred when the pH of the media was 
below 7, showed step-down trends in the pH range of 7–9, and then 
achieved equilibrium till the pH of the media reached 12 [41]. As shown 
in Fig. 6A, we can find four stages with the change in pH (i.e., >10, 8–10, 
6–8, < 6) that differed from the abovementioned results in the neutral 
and diluent acidic regions. These differences may be induced by the 
existence of carboxyl groups that can be considered amphoteric com
pounds from the Lewis acid-base theory. Moreover, the reversible re
action mechanism of pectin imine in the acidic media is shown in 
Fig. 6B, which shows the importance of proton. 

3.7. Drug release performance in vitro 

5-FU is one of the most important chemotherapeutic drugs but has 
many side effects. Thus, we proposed to load 5-FU on the injectable 
hydrogels to decrease its dosage. The sustained release performances 
were also determined in the simulated media with different pH (i.e., 6.8 
and 7.4) (Fig. 7). All the sustained release systems have cumulative 
release ratios below 10 % in the first 10 min, indicating that they do not 
occur the burst effect in the initial stage of the drug release. Moreover, 
the cumulative release ratio in the medium with pH = 7.4 was lower 
than that in the medium with pH = 6.8, which corresponds to the study 
of pH-responsiveness. The AP1-LYS2 obtained its release equilibrium in 
8 h, and all the equilibrium release ratios were around 30 %, an excellent 
value for a drug delivery system. Compared with other drug delivery 
systems obtained from the periodate-oxidized pectin [28,30], the pres
ently prepared drug delivery systems showed much better results in 
either brust release or release equilibrium. These results may reflect the 
advantage of the pendant grafting over the ring-opening reaction. 

3.8. The cytocompatibility of the injectable hydrogels 

Excellent cellular compatibility is an essential condition for the 
application of materials in biomedicine and drug delivery. Thus, the 
cytocompatibility of AP1-LYS1, AP1-LYS2, and AP2-LYS1 was calcu
lated via the MTT method. Figs. 8(A-C) indicated that the cell prolifer
ation rates decreased with the increasing dosage of as-prepared 
hydrogels. Also, the high dosage of pectin aldehyde went against cell 
proliferation, indicating the adverse effect of aldehyde groups. Howev
er, the lowest cell proliferation rate in the present study was still up to 
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83 % after 24 h culture. When the culture time was extended to 72 h, the 
proliferation rate decreased to 78.32 % ± 2.14 %. When the concen
tration was preset as 0.225 mg/mL, the CPR value are all higher than 96 
% after a 24 h of culture. Khan et al. prepared poly(N- 
Isopropylacrylamide)/carboxymethyl chitosan composite drug de
livery carriers and studied their cytocompatibility [42]. Results showed 
that our carriers (0.225 mg/mL) showed much better cytocompatibility 
than their carrier (1 μg/mL) with a higher cell viability (96 % vs. 90 %). 
Anitha et al. prepared carboxymethyl chitosan nanoparticles that 
showed similar result cmpared with the present study [43]. These results 
indicated that the present injectable hydrogels had high cytocompati
bility and biocompatibility to some extent. Figs. 8(D–F) show the 
photofluorogram of the cultured cell, from which we can find that the 
green spot was uniformly dispersed and the red spots were barely seen. 
These results also verified the high cytocompatibility of the as-prepared 
hydrogels. 

3.9. Inhibitory effect on MCF-7 cells 

From the inhibition assay on cancer cells shown in Fig. 8(G-I), it was 
found that the drug-loaded gel had an inhibitory effect on cancer cells, 
and the inhibitory effect on cancer cells was better when the gel con
centration was significant because of more dosage of 5-FU. Moreover, 
the cell proliferation rates also decreased with the extension of culture 
time. After 72 h culture, the highest inhibitory rate was about 24 %. 
Khan et al. studied inhibition ratio of free 5-FU with a concentration of 5 
μg/mL toward MCF-7 cell and found that the cell proliferation rate was 
close to 90 % [42]. This results showed that the present drug delivery 
systems can not only achieve the inhibition but sustained the release of 

5-FU. Moreover, the dosage of 5-FU in the present study (4.5 μg/mL) was 
much lower than the clinical medication (~15 mg/kg day) and pub
lished data [44]. Thus, we can declare that this drug delivery can ach
ieve the purpose of anticancer. 

4. Conclusion 

The present study developed a novel route for forming pectin alde
hyde that was further cross-linked by LSY to form the injectable 
hydrogel. The present study has obtained several conclusions as follows. 

(1) the pectin could be facilely modified with cyclopropyl formal
dehyde to form the aldehyde group pendant-grafted pectin, 
which avoided the ring-opening reaction by periodates and can 
be promoted to the modification of all other polysaccharides;  

(2) the AP was crosslinked by LSY via the Schiff base reaction to form 
the hydrogels that presented G' of >10,000 Pa with excellent self- 
healing performances, as well as pH-responsiveness, indicating 
the successful synthesis of the injectable hydrogel.  

(3) the 5-FU was in situ loaded on the injectable hydrogels that have 
shown advantages in the burst release (< 10 %) and sustained 
release with only 30 % release ratios in 10 h. 
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