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A B S T R A C T   

The detection and classification of concrete damage is essential for maintaining good infrastructure condition. 
Traditional semantic segmentation methods often can not provide accurate crack boundary information, which 
limits the further location and measurement analysis. In this study, the case segmentation method is used to solve 
the shortcomings of the previous detection methods and achieve more accurate crack identification results. This 
paper presents an improved YOLOv7 network design scheme. The network includes three different custom 
modules that can optimize the algorithm to solve missing feature problems, small recognition frames, and 
gradient problems, thereby improving accuracy. In addition, data sets with different sizes, exposures and noise 
are used to train the network, which expands the prediction range of the network and enhances the stability of 
the network. The experimental results show that compared with YOLOv7, YOLOv5, SOLOv2, Cascade Mask R- 
CNN, Condinst, Sparseinst, mAP is significantly improved. Thus, the proposed network algorithm has high 
practical engineering value.   

1. Introduction 

Cracking is one of the main defects exhibited by concrete structures, 
and it has become an important element when inspecting and repairing 
such structures [1]. Therefore, it is necessary to check the morphological 
changes and development trends of cracks by measuring their statuses 
and assessing the extents of their impacts on the target structure. Crack 
detection is important for performing daily building safety maintenance, 
rapidly assessing building damage after a disaster, and preventing the 
loss of life and property [2]. Manual inspection is a common crack 
detection strategy. However, manual methods are subjective, inefficient, 
laborious and dangerous. In addition, the accuracy and scope of manual 
detection are limited [3]. Therefore, the detection of concrete cracks 
using image processing or deep learning techniques has become a hot 
research topic [4]. With the rapid development of artificial intelligence, 
deep convolutional neural networks (CNNs) have been developed for 
automatic crack detection. This has opened a path to the development of 
an inexpensive, efficient and safe pavement inspection method [5]. Deep 

learning-based methods have been used in image classification [6], 
object detection [7] and pixel segmentation tasks [8], all of which are 
applicable to the crack detection problem. Classification-based methods 
have been widely used and have exhibited better performance than 
traditional image-based processing algorithms. Cha et al. [9] first 
combined a CNN model and the sliding window method to detect cracks 
in concrete surfaces. A training dataset containing 40,000 subimages 
with resolutions of 256 ± 3256 pixels was fed into the CNN model. The 
validation results showed that the trained neural network model yielded 
higher accuracy and robustness than an interactive multimodel. Chen 
et al. [10] and Cao et al. [11] used CNN-based methods on the same set 
of 40,000 images at a 227 × 227 resolution, and both studies achieved 
good recognition accuracies exceeding 99% and 90%, respectively. In 
addition, other studies [12] have implemented CNN-based automatic 
pavement crack identification models to distinguish between defective 
and noncracked concrete. These methods undoubtedly perform well in 
terms of automatic crack classification. However, they do not accurately 
locate cracks, and their usefulness for pavement maintenance and 
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management appears to be limited. 
Target detection solves the problem of how to localize and classify 

multiple targets in an image. Cha et al. [13] applied the Faster R-CNN 
approach to automatic crack detection and produced good results. Yu 
et al. [14] proposed a YOLOv4 model for bridge crack detection. In 
addition, Mohtasham Khani et al. [15] demonstrated that applying 
smoothing methods during preprocessing could significantly improve 
the performance of crack detection models. Notably, the sliding window 
approach is applied in all of the above algorithms. This detection 
method can only mark the type and position of each window. However, 

methods for detecting the distribution path, shape and density of the 
target crack do not provide highly accurate detection information con
cerning these crack aspects. To more accurately measure cracks, they 
must be detected at the pixel level. 

The purpose of segmentation is to identify the target object at the 
pixel level. Pixel segmentation is divided into instance segmentation (i. 
e., pixel-level segmentation of each individual target object, which is 
mainly used for complex scenes with multiple target objects of the same 
type) and semantic segmentation (i.e., pixel-level segmentation of all 
target objects of the same type, which is mainly applied to recognize a 

Fig. 1. YOLOv7 framework.  

Fig. 2. Mycontact-4 module and Mycontact-6 module.  
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few target objects). Chen et al. [16] proposed a novel neural network for 
pixel-level road crack detection and assessment that combines the ad
vantages of an encoder-decoder network and an attention mechanism, 
and the network has excellent detection performance. Qu et al. [17] 
proposed a deeply supervised convolutional neural network for crack 
detection by means of a novel multiscale convolutional feature fusion 
module, which was validated on three public crack datasets, and the 
results showed that the model achieved better performance than that of 
the competing methods. Regarding concrete crack detection, much 
research has been conducted on semantic segmentation-based methods. 
For example, Zhang et al. [18] achieved improved crack detection per
formance by introducing dilation convolutions with different expansion 
rates and a multibranch fusion strategy to detect cracks. Bang et al. [19] 
proposed a method based on an encoder-decoder network for the 
automatic detection of road cracks at the pixel level. ResNet-152 with 
transfer learning was chosen as the encoder, but the experimental results 
did not achieve the expected accuracy. Fan et al. [20] proposed an in
tegrated network for the automatic detection and measurement of road 
cracks. Zhang et al. [21] proposed a CNN-to-fully convolutional network 
(FCN) method to approximately localize cracks with a CNN and then 
segmented the cracks with an FCN. Xu et al. [22] proposed an improved 
fused CNN to identify cracks in complex images of the interiors of steel 
box bridge girders. By adding a bypass stage at the end of the regular 
stage, multilevel and multiscale image fusion can be performed. How
ever, semantic segmentation-based crack detection methods have some 
limitations; e.g., they can only provide accurate information about the 
locations and extents of cracks but cannot distinguish between different 
cracks. Semantic segmentation-based approaches cannot fully detect 
some particularly fine cracks due to their insufficient segmentation 
performance and the small amount of available data. Instance segmen
tation can provide a good solution to this problem by assigning a unique 
identifier to each crack in the given dataset so that each crack can be 

treated individually for distinguishing the cracks and obtaining bound
ary information. 

Therefore, this paper uses the YOLOv7 network from the You Only 
Look Once (YOLO) family of networks to segment cracks at the pixel 
level. In recent years, the YOLO architecture has achieved excellent 
results in computer vision and concrete crack detection applications in 
comparison with the state-of-the-art CNNs. Teng et al. [23] used 11 well- 
known CNN models as YOLOv2 feature extractors for crack detection 
purposes. The results confirmed that the YOLOv2 network uses different 
feature extraction models, leading to variability in its detection results. 
Nie and Wang et al. [24] used the YOLOv3 architecture to detect cracks 
in pavement images. The proposed architecture outperformed the 
accepted CNN in terms of the detection rate, but its accuracy was lower 
than that of the CNN approach. Peraka et al. [25] used YOLOv4 to detect 
and quantify the condition statuses of pavements collected by road 
agencies via a machine learning architecture and combined this method 
with a migration learning approach to identify multiple severity-based 
damage instances in the images. However, the training and prediction 
times of YOLOv4 are long, and its real-time performance still has room 
for improvement. Qu et al. [26] proposed an improved multiscale cross- 
layer feature fusion network based on the YOLOv5 method to mitigate 
the problem by which missed and false detections occur for large targets 
and to achieve better detection results on the PASCAL VOC and MS 
COCO datasets. However, YOLOv5 requires a large amount of training 
data to achieve improved accuracy. Ye et al. [27] proposed an improved 
YOLOv7 network that can better distinguish concrete cracks from 
numerous misleading targets to compensate for the shortcomings of the 
existing detection methods. Ma et al. [28] proposed a deep learning- 
based crack detection method with data collection and defect counting 
difficulties, as well as a system consisting of a pavement crack-based 
generative adversarial network (PCGAN) and a crack detection and 
tracking network named YOLO-MF, which has achieved excellent field 

Fig. 3. A YOLOv7 framework with the Mycontact-4 and Mycontact-6 modules added.  
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measurement results. While it is a fact that the YOLO series of networks 
have proven to be highly effective in object detection tasks, relying 
solely on a YOLO-based network for object detection fails to accurately 
capture detailed information about each crack. This limitation hinders 
our comprehensive understanding of crack features. Therefore, it is 
necessary to optimize the YOLO series of networks to provide detailed 
information about each detected crack while retaining the inherent fast 
detection capabilities of the YOLO framework. 

In this paper, we propose a new pixel-level instance segmentation 
network named YOLOv7-Weights-Multicat-Fusion (WMF), which is 

specifically designed for accurate crack detection and comprehensive 
analysis purposes. This network incorporates new techniques to extract 
subtle crack details, thus enhancing its overall crack detection 
performance. 

The main contributions of this study can be concluded as follows.  

• Our innovation, as opposed to a semantic crack segmentation 
approach, is an instance-level segmentation approach. Unlike se
mantic segmentation, which focuses only on the overall segmenta
tion of the crack region, our method is able to accurately segment 

Fig. 4. The YOLOv7 framework in Fig. 3 with residual connections added.  

Fig. 5. The multicat module.  
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each individual crack instance. This provides important information 
for conducting more detailed crack localization and analysis pro
cesses, making our method more advantageous for practical 
applications.  

• The original and the classic instance segmentation networks always 
produce incomplete recognition results and attain insufficient ac
curacy when detecting cracks in complex environments. For this 
reason, we develop three innovative modules and a unique connec
tion and add them to the original network so that it can provide 
sufficient crack detail information and achieve higher accuracy and 
recognition even in complex environments.  

• Our combination of object detection and segmentation takes full 
advantage of YOLOv7 as the primary object detection network. By 
fusing the instance segmentation task with YOLOv7, we are able to 
achieve both object detection and accurate crack segmentation, thus 
providing more comprehensive information about the morphologies 

and characteristics of cracks. This combination makes our approach 
superior to the competing methods in terms of crack identification 
and analysis.  

• We also innovate in terms of the utilized training datasets and data 
enhancement process. We construct a high-quality segmented data
set consisting of fracture instances and employ effective data 
enhancement strategies. These strategies not only improve the 
generalization and robustness of the proposed model but also 
enhance its ability to learn from various crack instances, thus further 
improving the performance of our instance segmentation cracking 
method. 

2. Theoretical background 

2.1. YOLOv7-WMF architecture 

The structure of YOLOv7 is based on a series of downsampling and 
upsampling layers. YOLOv7 enables the network to learn multiscale 
layered features by increasing the number of feature maps and 
decreasing the spatial resolution of the input image, thus accurately 
detecting objects with different sizes in the input image. This framework 
is shown in Fig. 1. 

The architecture of YOLOv7 uses a convolutional layer as its first 
layer to process the input image and extract low-level features. This is 
followed by a series of downsampling layers that reduce the spatial 

Fig. 6. The YOLOv7 framework in Fig. 4 with the Multicat module added on top.  

Table 1 
Number of cracks per type.  

Dataset Training set Validation set Total number 

Crack dataset 960 411 1371 
Longitudinal 357 137 494 
Transverse 320 123 443 
Fatigue 283 151 434  
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resolution of the feature map by applying 2 convolutional layers. The 
downsampling factor is 2 in each spatial dimension, thus increasing the 
number of feature maps while reducing their spatial dimensionality. In 
the YOLOv7 architecture, the downsampling layers are followed by a 
series of upsampling layers that are designed to reduce the number of 
feature maps while increasing their spatial resolution. The upsampling 
layers are usually implemented using transposed convolutional layers, 
which perform the upsampling operation by inserting zeros between the 
elements of the input feature map and convolving the generated tensor 
using a set of filters. 

To achieve improved object detection accuracy, the YOLOv7 archi
tecture also includes some jump connections. The role of these jump 
connections is to combine the features acquired from different layers. 
They do this by adding the output of one layer to the input of a later layer 
and are typically used to fuse features derived from a downsampled 
layer with the features obtained from an upsampled layer. 

In addition to convolutional and upsampling layers, the YOLOv7 

architecture introduces the concept of anchor frames. Anchor boxes are 
predefined bounding boxes that are used to detect objects in the input 
image. These anchor frames are learned during the network training 
process and are used to predict the positions and sizes of the objects in 
the input image. In addition, the YOLOv7 architecture includes classi
fication and regression layers for predicting the category labels and 
bounding box coordinates of each anchor box. 

2.2. Mycontact model structure 

To make the network model more accurate in terms of concrete crack 
identification, the original network model is modified in this study. 
First, its ELAN module is improved, as shown in Fig. 2. The purpose of 
this module is to stitch multiple input tensors according to some 
dimension (the first dimension by default). In the newly constructed 
Mycontact-4 module, each tensor input from the CBS to the concate
nation layer is first multiplied by a training-derived weight. The weights 
are defined via the NN parameters in PyTorch, which means that they 
are part of the model and can be obtained via training. The weights are 
set to 1 at initialization, and then in each forward propagation step, the 
weights are normalized to ensure that they sum to 1. This can be seen as 
a method for performing a weighted average calculation on the input 
tensor. Through this operation, multiple feature maps can be combined 
according to their specific weights. 

The two modules in Fig. 2 are very similar, the difference being that 
Mycontact-4 is used to process 4 input tensors, while Mycontact-6 is 

Fig. 7. Three typical fracture types.  

Table 2 
Number of labels for each type of crack.  

Dataset Validation dataset Training dataset Total number 

Crack dataset 480 1984 2464 
D00 116 512 628 
D10 227 873 1100 
D20 137 599 736  

Fig. 8. The proportion of the number of labels for each type of crack.  
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used to process 6 input tensors. That is, four feature maps are weighted 
in Mycontact-4, and six feature maps are weighted in Mycontact-6. By 
weighting the feature maps, more useful feature information can be 
extracted, as shown in Fig. 3. 

In addition, residual connections are added to the approach devel
oped in this study, as shown in Fig. 4. We resize each feature map output 
by the Mycontact-4 module via a convolutional layer and stitch it with 
the output of the corresponding Mycontact-6 module. The result of this 
splicing process is then fed into the REP module along with the output of 
the Mycontact-6 module. The same operation is performed again in the 
subsequent Mycontact-4 and Mycontact-6 modules. 

This series of operations aims to fuse the shallow and deep features of 
the input image. The shallow network extracts features that are closer to 
the input with smaller perceptual fields and smaller overlapping areas, 
thus capturing more details and pixel-level information. In contrast, the 
features extracted by the deep network are closer to the output, their 
perceptual fields are increased, and their overlapping areas are 
increased, thus obtaining the holistic information of the input image. By 
fusing these two groups of features, the dependence of the model on 
individual features can be reduced, and the stability and accuracy of the 
model can be improved. Feature fusion can also reduce the sensitivity of 
the model to noise and outliers and improve the robustness of the model. 
In addition, since the two feature groups come from different levels, 
redundant or complementary relationship may be present between 
them. Through feature fusion, these features can be integrated into a 
richer and more comprehensive feature representation, thus enhancing 
the representational power of the model. 

2.3. Multicat model structure 

The concatenation module is also modified. A new Multicat module 
is constructed in this study, as shown in Fig. 5; in addition to the original 
structure, this module also fuses information from the earlier Mycontact- 
4 module. 

After this part of the information enters the Multicat module, both 
average pooling and maximum pooling are performed, and then the two 
parts are summed. By conducting average pooling, the average value of 
the pixel values in the target region can be calculated, and the overall 
distribution features can be extracted. The maximum pooling process, 
on the other hand, selects the most significant features in the region of 
interest and provides better responses for local features, such as edges 
and textures. This step aims to reduce the spatial dimensionality by 
dividing the input feature map into nonoverlapping regions and 
converging (by averaging or taking the maximum value) for each region. 
This helps reduce the numbers of computations and parameters and 
makes the network more robust to translations and spatial variations. 

The multiscale fusion process executed through the Multicat module 
can obtain more comprehensive and richer feature representations and 
improve the ability of the model to represent the target object, as shown 
in Fig. 6. In addition, the perceptual field of the model can be expanded 
so that it can capture a wider range of scene information. By introducing 
features at different scales, the model can better understand the 
contextual and global information of the whole scene, thus improving its 
recognition and understanding of complex scenes and large-scale tar
gets. Moreover, the objects contained in the input images may have scale 
variations, posing challenges for tasks such as target detection, tracking 
and segmentation. By performing multiscale fusion, the model can 
become robust to scale changes. Features at different scales can 
complementarily provide information about the target object, thus 
enhancing the adaptability of the model to scale changes. 

3. YOLOv7 training process 

3.1. Datasets 

3.1.1. Concrete crack dataset 
The image dataset used for segmentation in this paper consists of 457 

images of concrete damage taken by high-resolution cameras. Since the 
complexity of concrete damage detection lies in the diversity of the 
observed weather conditions, light intensity diversity greatly affects the 
accuracy of the damage detection process. Therefore, to simulate crack 
pictures under different lighting and weather conditions, we expose, dim 
and overnoise the pictures with three modes: longitudinal, transverse 
and fatigue concrete cracking. The number of fracture types in the 

Fig. 9. The crack map of crack 500 is shown as an example.  

Table 3 
The results of the comparative studies involving different modules.  

The 
utilized 
network 

Box Seg 

Precision Recall mAP50 Precision Recall mAP50 

W 89.30% 89.80% 93.47% 80.83% 80.97% 79.74% 
WM 90.61% 86.70% 93.67% 84.00% 80.19% 80.89% 
WF 89.93% 88.47% 93.41% 81.68% 82.81% 80.98% 
M 89.56% 82.09% 91.69% 83.65% 74.52% 76.82% 
MF 90.92% 85.12% 91.68% 81.63% 76.98% 78.58% 
F 90.62% 87.57% 92.52% 83.55% 80.47% 80.39% 
YOLOv7 82.88% 82.08% 93.78% 71.46% 70.30% 70.45% 
YOLOv7- 

WMF 89.48% 88.25% 94.15% 84.59% 85.81% 83.09%  

G. Ye et al.                                                                                                                                                                                                                                       
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dataset is shown in Table 1. The dataset pictures are shown in Fig. 7. 
Transverse road cracks are cracks that are perpendicular to the di

rection of road travel, and they are caused by factors such as pavement 
base settlement, pavement material fatigue, and vehicle loading and 
temperature changes. Although these cracks may have smaller impacts 
on vehicle movement, their long-term presence can lead to problems 
such as fractures and loosening in concrete pavements. 

On the other hand, longitudinal cracks run parallel to the road travel 
direction and are mainly caused by roadbed settlement, reinforcement 
corrosion or improper pavement design. These types of cracks tend to 
cause bumps and vibrations during vehicle travel, thus accelerating 
pavement damage. 

Fatigue cracks are formed due to the regular action of traffic loads on 
pavements, mainly on highways that are frequently used by heavy 

vehicles. Fatigue cracks can have a major impact on vehicle driving 
safety, so detecting them is an important aspect of road maintenance and 
safety. The crack images are manually annotated as binary images using 
Photoshop. A total of 1371 cropped images with resolutions of 512 ×
512 are obtained after cropping. The labels of the dataset are shown in 
Table 2 and Fig. 8. 

3.1.2. Crack500 dataset 
Yang et al. obtained 500 images of pavement cracks with resolutions 

of approximately 2000 × 1500 pixels [33] using a mobile device at the 
main campus of Temple University. Each image is annotated at the pixel 
level. Due to the graphics processing unit (GPU) memory limitation of 
the utilized computer, each image is cut into 16 small images. With this 
preprocessing strategy, the training set, validation set, and test set 
contain 1896, 348 and 1124 images, respectively. The resolution of each 
cropped image is 640 × 360. In this dataset, the pavement material is 
asphalt, and the images contain shadows and inhomogeneous lighting 
conditions, which pose significant challenges for achieving accurate 
crack segmentation. A sample of the crack images can be seen in Fig. 9. 

3.2. Implementation details of the training process 

All experiments are performed on PyTorch with the CentOS7 oper
ating system and implemented on a workstation with a Linux system 
using the GPU mode. Compared to central processing units (CPUs), 
GPUs can perform deep learning tasks faster and more efficiently due to 
their efficient parallel operations. The two employed GPUs are NVIDIA 
Ampere A100 units with 80 GB of memory. 

In general, it is tedious to configure the optimal hyperparameters. 
For deep learning algorithms, the selected hyperparameters have an 
important impact on the training time, storage cost and quality of the 
trained model. Stochastic gradient descent (SGD) is combined with the 
momentum method and used as the optimizer to train the model via 
backpropagation. The new layers are randomly initialized with weights 
derived from a zero-mean Gaussian distribution possessing a standard 
deviation of 0.01. The basic learning rate of the training network is an 
important hyperparameter. In this study, the learning rate is set to 0.001 
to maintain a balance between computational speed and accuracy. The 
batch size is set to 1 during training based on the GPU memory. The base 
size of the anchor is the basic parameter affecting the anchor size; it is set 
to 16. In addition, the weight decay and momentum parameters are set 
to 0.0005 and 0.937, respectively. 

4. Experiments and results 

4.1. Evaluation indicators 

To accurately and fairly evaluate the performance of the proposed 
instance segmentation model, we use three evaluation metrics that are 
widely employed in other models, including precision, recall, and mean 
average precision (mAP). We treat the cracked pixels in each image as 
positive instances and the background pixels as negative instances. 
These three metrics are defined as follows: 

Presion =
TP

TP + FP  

Recall =
TP

TP + TN  

mAP =
1
m

∑m

n=1
APn  

where TP indicates the number of true positives, FP indicates the 
number of false positives, and FN indicates the number of false 
negatives. 

Fig. 10. Recognition results obtained by adding different modules.  
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Fig. 11. The losses calculated for YOLOv7 under different modules.  
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4.2. Ablation experiments 

Usually, the modification of a module results in an improvement in 
the performance of the associated artificial neural network. However, 
when only certain modules are added to work alone, good results are 
obtained. When different modules work together, this setting may 

degrade the resulting network performance. Therefore, to construct an 
improved network that is suitable for concrete crack identification based 
on YOLOv7, tests are performed on different optimization modules in 
this section. 

The network structure of YOLOv7 returns to boxes enclosing the 
spine, neck and head, and the categories of the cracks in each enclosed 
box are identified. Therefore, three optimization scenarios are consid
ered in our experimental analysis, and in each scenario, different 
experimental optimization cases are executed. We verify the perfor
mance of the Mycontact-4 and Mycontact-6 modules by adding residual 
connections to the overall network structure and replacing the original 
concatenation module with the custom Multicat module in the neck. In 
addition, this section evaluates and validates the different module 
combinations to further determine the specific impacts of the different 
modules on each other, as shown in Table 3. 

The YOLOv7 recognition results obtained after adding different 
modules are shown in Fig. 10. First, the original YOLOv7 network is 
tested, and its mAP50 values for target detection and segmentation reach 
93.78% and 70.45%, respectively, when the number of epochs is set to 
130 during the training process. Subsequently, YOLOv7 is added to the 

Fig. 12. Predicted crack visualization results produced by different modules.  

Table 4 
Comparison results produced by different network models.  

The utilized 
network 

Box Seg 

Precision Recall mAP50 Precision Recall mAP50 

YOLOv7-WMF 0.908 0.902 0.955 0.872 0.864 0.879 
YOLOv7 0.904 0.894 0.937 0.808 0.815 0.811 
SOLOv2 / / / / / 0.697 
Cascade 

Mask R-CNN 
/ / 0.671 / / 0.455 

Condinst / / 0.776 / / 0.661 
Sparseinst / / / / / 0.440 
YOLOv5 0.857 0.772 0.824 0.809 0.652 0.687  

G. Ye et al.                                                                                                                                                                                                                                       



Automation in Construction 160 (2024) 105331

11

Mycontact-4 module, Mycontact-6 module and residual connections for 
ablation experiments. The addition of the Mycontact-4 module and 
Mycontact-6 module provides some target detection performance im
provements, with slight increases in both the mAP50 and recall metrics 
(reaching 93.47% and 89.80%, respectively). However, these modules 
have smaller impacts on the performance achieved in the segmentation 
task. The addition of the residual network provides significant target 
detection and segmentation performance improvements. The mAP50 and 
precision of the segmentation results improve to 76.82% and 83.65%, 
respectively. While the recall value decreases slightly to 82.09% for 
target detection, it increases slightly to 74.52% in the segmentation task. 
However, when the two modules are combined, although both metrics 
improve, with the mAP50 values reaching 93.67% and 80.89%, they are 
lower than those obtained when only the Mycontact-4 module or 
Mycontact-6 module is added alone. 

The reason for this result is that when too much feature information 
is available, the model may have difficulty distinguishing which features 
are useful for the given task and which features consist of noisy or 
irrelevant information. This causes the model to be disturbed by useless 
features and reduces the model's attention to and recognition of key 
features. Therefore, in the neck, we construct a new Multicat module for 
multiscale fusion to improve the ability of the model to represent and 
provide information about the target object through the features 
observed at different scales in a complementary manner, thus enhancing 
the adaptability of the model to scale changes. After adding the Multicat 
module to YOLOv7, a certain target detection performance improve
ment is achieved, especially in terms of the mAP50 and precision metrics. 

However, in the segmentation task, the boosts provided for the 
mAP50 and precision values are smaller, while the recall increases 
slightly. The mAP50 values reach 92.52% and 80.39% on the target 
detection and segmentation tasks, respectively. When the three 
improved parts are added together to the YOLOv7 network, the mAP50 
peaks at 94.15% for the target detection task, while the highest mAP50 
values for the other combined approaches are below 93.78%. Similarly, 
the highest mAP50 value of 83.09% is achieved in the segmentation task, 
while the highest mAP50 values for the other combined approaches are 
below 80.98%. Fig. 11 shows the performance achieved by the YOLOv7 
network under the addition of different modules during the training 
process. The loss curves obtained on the training and validation sets 
during the training process of the network are given, and it can be seen 
that the training algorithm converges quickly and that a high mAP can 
be obtained. Therefore, it is experimentally verified that the information 
contained in feature maps can be effectively extracted by adding the 
improved Mycontact-4 module, Mycontact-6 module and residual con
nections, and the multiscale fusion process of the Multicat module is 
used to understand the before-and-after and global information con
tained in the feature maps. It is shown that simultaneously adding the 
three improved parts can enable the model to more accurately detect, 
locate, and segment the target object. The segmentation prediction for 
each module is shown in Fig. 12. 

4.3. Comparative experiments 

The improved detection method is compared with other detection 

Fig. 13. mAP50 results obtained for comparison studies involving three different types of crack identification tasks.  
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methods, such as SOLOv2, Cascade Mask R-CNN, Condinst, Sparseinst, 
YOLOv5 and YOLOv7. To ensure a fair comparison, the operating 
environment and network parameters are kept consistent, and all 
methods are trained until they reach convergence to achieve optimal 
performance. Table 4 shows the detection results obtained by each 
method evaluated using the same test set. In terms of target detection, 
the model proposed in this study yields higher accuracy (mAP50) than 
YOLOv7 and YOLOv5. The Mycontact-4 module and Mycontact-6 
module in YOLOv7-WMF can help the model focus more on cracks, 
thus greatly improving its accuracy. The target detection mAP50 of 
YOLOv7-WMF is 13.1% higher than that of YOLOv5 and 1.8% higher 

than that of YOLOv7. For the surface segmentation task, the segmen
tation accuracy (mAP50) of the proposed model is much higher than that 
of a series of classic example segmentation models, such as YOLOv7. A 
comparison among the instance segmentation metrics yielded by 
different networks is shown in Fig. 13. 

Fig. 14 shows the four pavement crack images, their corresponding 
labels and the prediction results obtained using different models on the 
same dataset. The first row shows the original RGB images of the cracks, 
and from the second row to the sixth row, the predicted pavement crack 
images generated by our proposed YOLOv7-WMF approach and the 
other five networks are shown. Importantly, all test images are randomly 
selected to reflect the complex conditions of real coagulation cracks. 

The results in Fig. 14 show that Cascade Mask R-CNN uses a pre
defined representation of the crack shape, such as a rectangle or a 
polygon. This representation may not be properly adapted to the irreg
ular shape of the given crack and may be limited, especially when 
dealing with complex, curved or irregularly shaped cracks. Therefore, 
additional postprocessing steps or the use of other methods that are 
more suitable for irregular shapes may be needed when splitting cracks 
with this approach. YOLOv7-WMF uses weighted feature fusion to 
effectively solve this problem because this technique can synthesize 
multiple pieces of feature information, strengthen the key features, and 
complement each them with information. Two main reasons account for 
the segmentation accuracy differences between SOLOv2, Condinst, 
Sparseinst and the model proposed in this paper. (1) A few crack regions 

Fig. 14. Experimental results of different crack segmentation methods.  

Table 5 
Comparison among different network models on crack 500.  

The utilized 
network 

Box Seg 

Precision Recall mAP50 Precision Recall mAP50 

YOLOv7-WMF 0.861 0.812 0.809 0.812 0.735 0.722 
YOLOv7 0.718 0.778 0.772 0.634 0.692 0.664 
SOLOv2 / / / / / 0.541 
Cascade 

Mask R-CNN / / 0.716 / / 0.556 

Condinst / / 0.637 / / 0.538 
Sparseinst / / / / / 0.553 
YOLOv5 0.807 0.775 0.784 0.724 0.685 0.657  
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that cannot be wrapped by bounding boxes remain, resulting in an 
inability to identify these cracks. (2) Difficult-to-handle small and dense 
targets may be present. In the example crack splitting task, small target 
cracks and dense target cracks are often highly difficult to distinguish. 
The utilized methods may be affected by resolution and perceptual field 
size limitations when dealing with small targets, and they may suffer 
from performance degradation when addressing dense target cracks due 
to computational and storage limitations. This results in a segmentation 
mAP50 that is far inferior to that of the network proposed in this paper. 

To demonstrate the generality of the proposed network for crack 
recognition, this paper also uses 500 images of pavement cracks with 
resolutions of approximately 2000 × 1500 pixels taken by Yang et al. for 
experiments [34]. The improved detection method is compared with the 
above networks, as shown in Table 5 and Fig. 15. The results show that 
the detection accuracy of YOLO-WMF is better than that of the other 
traditional instance segmentation methods (by 5.8%, 18.1%, 16.6%, 
18.4%, and 16.9% higher). The improved model is more suitable for the 
detection of concrete cracks, and the provided improvement is effective. 
Based on the above comparison conducted on the same dataset, under 
the same test conditions, and with the use of both hardware devices, we 
can clearly see that the improved network presented in this study has 
better performance and is more suitable for concrete crack detection 
than the competing techniques. 

Fig. 16 shows the prediction results obtained for four randomly 
selected images from the Crack500 dataset. The first row shows the 
original RGB images of the cracks, and from the second to the sixth row, 
the predicted pavement crack images generated by our proposed 
YOLOv7-WMF method and the other five networks are presented. 
Importantly, all test images are randomly selected to reflect the complex 
conditions of real coagulation cracks. 

From the first and second columns, we can easily find that only our 
modified YOLOv7-WMF network and YOLOv7 can accurately predict 
pavement cross-cracks. The other networks, SOLOv2, Condinst, Spar
seinst, and YOLOv5, can only roughly predict pavement cracks. The 
prediction results of Cascade Mask R-CNN only provide a small fraction 
of the fuzziness of the cross-slit. 

The third column shows more challenging complex transverse 
cracks, and the fourth column shows wider transverse cracks. Compared 
with the other prediction results, those predicted by the YOLOv7-WMF 

network and YOLOv7 are able to most closely label the ground truth of 
the crack pattern. Regarding the finely cracked part in the middle of the 
image, only YOLOv7-WMF can represent the intermittent part of the 
cracks in comparison with the other models. The remaining models are 
unable to accurately predict the difficult and imperceptible fractures, 
indicating poor feature extraction capabilities at the global level. The 
fourth column contains wider transverse cracks. However, due to the 
significant differences between the pixel gradients of the pavement 
cracks and the background, all models can satisfactorily predict the 
crack skeletons, but YOLOv7-WMF can better predict the widths and 
boundaries of the cracks. 

5. Discussion 

In this paper, we propose using the instance segmentation method to 
identify cracks, which is very different from the previous approach of 
using semantic segmentation to identify cracks. For crack identification 
tasks, instance segmentation has more accurate localization and seg
mentation abilities than semantic segmentation. Thus, in engineering 
applications, instance segmentation allows each crack to be segmented 
as a separate instance, resulting in finer crack localization and seg
mentation processes. This is very important for crack detection and 
evaluation purposes. 

Whereas semantic segmentation usually represents cracks with pixel- 
level markers, it does not provide fine localization and segmentation 
results for cracks. This can lead to the inability to accurately measure 
and evaluate important information such as the sizes, shapes, and lo
cations of cracks in engineering applications. During the crack identi
fication process, instance segmentation can also provide an individual 
identifier for each crack, thus enabling individual-level analysis and 
processing steps for each crack in subsequent analyses. In contrast, se
mantic segmentation cannot accurately distinguish overlapping crack 
instances; it can only label the entire overlapping region as a crack class 
and cannot separate each crack instance. This can result in the inability 
to analyze overlapping cracks at the individual level in subsequent 
analysis and processing tasks. 

The following engineering applications are available. 1. Targeting 
and counting: Instance segmentation can accurately locate and split 
each crack instance, providing a bounding box and identifier for each 

Fig. 15. mAP50 results obtained in crack identification comparison studies.  
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crack. This enables the precise location and counting of cracks in engi
neering applications and facilitates quantitative crack analyses and as
sessments. 2. Fine feature extraction: Instance segmentation focuses on 
the individual features of each crack instance, so it can extract finer 
features such as crack shapes, textures and sizes. These characteristics 
are important for engineering tasks such as class type identification and 
classification, crack severity assessment and defect detection during 
construction. 3. Individual analysis and statistics: Instance segmentation 
allows for independent analyses and statistics to be produced for each 
crack instance. This helps us understand the distributions of cracks, the 
interrelationships between cracks and the trends of cracks. This infor
mation is important for making engineering decisions, developing 
maintenance plans and implementing quality control. 4. Defect detec
tion and analysis: Split crack examples can be used to identify smaller, 
hidden cracks and analyze them in fine detail. This is very helpful for 
performing defect detection and quality control in engineering con
struction cases, as cracks can be detected and repaired in time to reduce 
safety hazards and engineering quality problems. 

6. Conclusions 

In this study, a high-precision pavement crack instance segmentation 
model based on YOLOv7 is proposed. The splitting model achieves the 
dual tasks of target crack detection and crack splitting. We propose two 
modules by splitting feature map data and assigning different weights to 

different data. The Mycontact-4 module is applied to the backbone 
mainly to help the network remove irrelevant crack recognition details. 
The Mycontact-6 module applied in the head is mainly employed to 
solve the limitations of the network recognition environment, and then 
we include special residual connections in the underlying model archi
tecture. To make the feature map information of the backbone available 
to the head, segmentation can account for the feature map of the original 
image so that the subtle pre-existing differences between the input and 
the target can be captured. In addition, we introduce Multicat, which 
performs feature extraction and integration operations on three different 
subimages of the input. The message passing operations (residual con
nections) in the module, which connect the extracted features together, 
allow the network to extract crack information from the different sub
images, especially the features of the cracks. Through operations such as 
interpolation, scale adaptation is ensured for the different subimages. 

The proposed method trains on our dataset and obtains an instance 
segmentation model for multiscene concrete crack images. The results 
show that the precision, recall, and mAP50 reach 87.2%, 86.4%, and 
87.9%, respectively, when the proposed model is verified on the testing 
set. The developed concrete crack detection approach using the modi
fied YOLOv7-WMF network is an effective and practically meaningful 
method. 

However, this study requires further research and improvement in 
practical applications to suit the needs of different regions and envi
ronments. (1) The improved YOLOv7 network developed in this study 

Fig. 16. Experimental results obtained by different segmentation methods on fracture 500.  
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has room for improvement in terms of reducing the number of network 
parameters and its complexity level to ensure that the network can 
operate more efficiently in resource-constrained environments. (2) The 
improved network is slightly slower in terms of operating speed than the 
legacy YOLOv7 approach. This suggests that networks are becoming 
lighter. However, some performance may be sacrificed in some cases. 
This may require further optimization. (3) Water damage, tree branches, 
and other crack-like conditions can be added to future research to enrich 
the content of the formed dataset. This will help the network better 
respond to a variety of practical situations. (4) A finer and more specific 
delineation of crack types can be used to categorize the types of cracks 
that are more harmful to the target structure. This can improve the 
usefulness and effectiveness of the network, making it become more 
specific about the levels of harm produced by different cracks; this 
would increase its practical value in engineering applications. 
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