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A B S T R A C T   

Safflower is one of the most important specialty economic crops in the world. Safflower blossoms are harvested 
continuously for 3–5 times. Untimely picking can affect the opening of filaments in the next crop, resulting in 
reduced filament production and serious economic losses. However, the safflower images collected by picking 
robots were affected by lighting conditions or complex backgrounds. The existing segmentation algorithms have 
the problem of insufficient segmentation or over-segmentation, because of the small safflower size and locali
zation area. Therefore, combining improved particle swarm optimization (PSO) with a rotated rectangle algo
rithm based on the filament-necking localization method for safflower-picking robots was proposed. The R- 
component image in RGB color space was extracted as a preprocessing sample by combining the color features of 
safflower. The inertia weights in the PSO algorithm are improved to enhance the performance of the algorithm. 
An adaptive nonlinear function is introduced to search for the optimal threshold and initially segmented to 
obtain the binary image. Then, the barycenter and minimum outer rectangle of the contour were set up using the 
rotated rectangle algorithm based on the geometric features of the filaments. The circular region of interest (Cir- 
ROI) of filament-necking is determined. The Zhang-Suen refinement algorithm was used for skeleton extraction 
to design an algorithm for localizing the picking point of safflower filaments. To test safflower images collected 
in complex environments, the results of average processing time were 0.14 s, and the average relative target area 
error rate was 19.33 %. Moreover, the localization accuracy of the picking point was 89.75 %. The filament- 
necking localization method provides a theoretical basis and experimental data support for damage reduction 
and efficient harvesting of safflower filaments.   

1. Introduction 

The worldwide sown area of safflower was 122,000 ha in 2022(De 
Oliveira Neto et al., 2022; Zhang et al., 2023a). China is one of the major 
safflower producers in the world (Gongora et al., 2022; Zhang et al., 
2023b). Since safflower bears multiple clusters of small, numerous, 
compact, and dense filaments, the filaments segmentation is key to the 
precise localization of picking point in robots picking (Campos et al., 
2016; Abbood et al., 2020). Currently, the vision camera of 
safflower-picking robots is often used to observe safflower and machine 
vision is employed to perceive the growth of safflower and the change of 
the environments in real time (Dischinger et al., 2021; Qiao et al., 2023). 
However, the external optical variations and backgrounds in the images 
captured are considerably complex, such as clouds, branches and leaves, 

plant shadows, and other objects far away from the camera (Benbarrad 
et al., 2021). The color and texture feature information of the captured 
safflower become blurred in the edge and non-edge regions. Therefore, 
improving the efficiency and quality of picking safflower is important. 

To reduce damage to safflower filaments by picking robots, keeping 
the intact filaments, and utilizing safflower images to further study the 
phenotype of safflower filaments, it is necessary to first segment the 
filaments from the images. Then, the optimal picking area was detected 
on the segmented filament image and accurately locates the picking 
point of safflower filaments in the picking area. This method can 
effectively avoid the loss of other filaments caused by the robotic picking 
process, which would affect the re-opening of the filaments, leading to 
reduced filament yield and quality (Singh et al., 2021a; Li et al., 2022). 
However, the quality of filament segmentation is often severely affected 
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by factors such as noise, variations in light intensity, overall safflower 
scale, and crop shading in complex environments (Gao et al., 2023). By 
enhancing or decreasing the brightness and saturation of the image, the 
color and texture features of the safflower filaments become more 
distinguishable. Generalized image segmentation technology allowed 
for the segmentation of filament images, which is an important basis for 
image recognition and localization of picking points (Qiao et al., 2019). 
In addition, the color of the picking point for safflower filaments is 
similar to that of the leaf and crop shadows. Picking points were difficult 
to identify and locate accurately and output coordinates (Dischinger 
et al., 2021; Su et al., 2021). Nevertheless, machine vision can sense the 
growth condition of crops in real time, solving the phenomenon of 
feature blurring and difficult segmentation due to the complex envi
ronments of safflower filaments. Therefore, machine vision technology 
is used to position the picking point in real time and assist the intelligent 
safflower-picking robot in picking accurately. 

Machine vision technology is characterized by non-contact and 
automation, providing a low-cost and efficient for real-time crop picking 
(Kumar et al., 2022; Soltani et al., 2022). The recognition and seg
mentation of fruits are one of the core technologies for automated 
picking in agricultural robots (Gongal et al., 2015b; Li et al., 2023a,b). 
To address the problem of accurate segmentation and recognition of 
crops, Yogesh et al. (2020) and Sabzi et al. (2019) segmented the pixels 
of the region using fruit size, contour, and texture features and extracted 
them. Behroozi-Khazaei and Maleki (2017) proposed a robust algorithm 
based on ANN and GA for segmenting grape clusters and leaves from the 
background using color features was developed. GA was employed for 
optimizing of ANN structure and selecting supreme color features 
simultaneously. Wang et al., (2019a) investigated a color-independent 
segmentation method. The method combines features of image sa
liency and contours to segment apple fruits from naturally illuminated, 
different-colored apple images. Zou et al. (2022) proposed a method for 
designing a color index based on different tasks. This method adapts to 
changes in the external environment. Fan et al. (2021) proposed a patch- 
based gray-centered color space segmentation algorithm. The algorithm 
can segment apples with bright and dark patches, keeping the geometry 
of the segmentation target. Li et al., (2017; 2018) recognized green 
apples under complex backgrounds combining the texture, shape, and 
color features of the image. The method provided better segmentation 
results for fruits with light background occlusion. Chithra and Henila 
(2021) proposed an algorithm for segmenting out ROI from apple fruit 
images. Segmentation of regions of interest in color images of apple 
fruits using GTA was performed with an accuracy of 96.67 %. Although 
the above method solved the problem of crop recognition and segmen
tation in terms of size, color, and texture features, it was only applicable 
to cases where there were significant differences (color, brightness, etc.) 
between the target to be segmented and the background. 

Recently, scholars have also researched the localization and seg
mentation of crop-picking point. Xiong et al. (2017) obtained binary 
images of grape bunches through Ostu threshold segmentation in solv
ing the visual localization problem of the picking point. At the same 
time, Hough straight line fitting was used to determine the picking point. 
Luo et al. (2015) obtained the ROI above the outer rectangle by image 
segmentation. Similarly, the position of the picking point on the fruit 
stalk was determined by screening the straight line with the closest 
distance to the barycenter. However, most of the studies about picking 
safflower are focused on mechanized positioning. Zhang et al. (2018) 
and Ge et al. (2015) proposed an improved morphological processing 
method for contour transformation to obtain the two-dimensional center 
point coordinates of the filaments by combining the improved picking 
point and the method of the maximum internal tangent circle. Chen 
et al. (2021) proposed the principle of set strip pre-positioning, which 
adjusted the distribution state of single safflower fruit balls from 
spatially disordered to strip-ordered, reducing the difficulty of recog
nizing and picking the safflower. In summary, the studies found that 
crop picking mainly focused on the recognition and segmentation of 

crops and the calculation of the geometric dimensions for crops. In 
contrast, the segmentation and localization algorithms need to be 
designed for the features of different targets (Montoya-Cavero et al., 
2022; Bai et al., 2023). Vision camera for agricultural robots is unable to 
discriminate the color and texture features of safflower because of the 
influence of light variations, branches, leaves, plant shadows, and other 
objects in the edge and non-edge regions of the safflower. Further 
exploration is needed for safflower image segmentation. 

The PSO algorithm is a globally optimized and locally convergent 
search algorithm that has been used in areas such as path planning, and 
automatic control. Pandey et al. (2010) proposed an algorithm for task 
scheduling problems based on PSO to minimize the cost and time. Ritu 
and Kumar (2014) proposed a multi-objective list scheduling algorithm 
to optimize the reliability and completion time of constraint vector 
partitioning for scientific workflow. The PSO algorithm had faster 
convergence than other heuristics and used fewer algorithm parameters 
than other heuristics, which made the algorithm less dependent on 
parameter tuning (Jatmiko et al., 2007). However, the PSO algorithm 
was prone to premature convergence. Therefore, to improve the recog
nition and localization accuracy of safflower-picking robots, the seg
mentation method of safflower filament images based on the improved 
PSO and rotated rectangle algorithm was proposed. Firstly, according to 
the color features of safflower, the maximum connectivity region of 
segmented filaments is extracted with the improved PSO algorithm. The 
inertia weights and adaptive nonlinear function in the PSO algorithm 
are improved to enhance the performance of the algorithm. Then, the re- 
segmentation method based on the geometric features of filaments is 
used to determine the circular ROI. Finally, using the Zhang-Suen 
refinement algorithm for skeleton extraction, the localization method 
of filaments is designed to enable efficient and low-loss intact safflower- 
picking. The main contributions of the proposed approach include: 

(1) To effectively reduce the interference of the background region 
on safflower filament detection and strengthen the global and local 
search capability, the optimal threshold is searched by an improved PSO 
algorithm with safflower filament as the target feature. The redesigned 
fitness function dynamically adjusts the optimality-seeking global 
search for safflower to maximize the extraction of complete safflower 
filaments. Meanwhile, edge and non-edge local convergence of safflower 
is performed to make the population update the historical optimal 
fitness value and position and segment the safflower. 

(2) The barycenter and contour minimum outer rectangle of saf
flower filaments was set up using the rotated rectangle algorithm based 
on the geometric features of the filaments, which determines the Cir-ROI 
of filament-necking. The algorithm effectively solves the problem of 
picking point localization errors caused by variations in light intensity 
and crop shadows. 

(3) Combining the primary segmentation and re-segmentation re
sults, the structure of safflower is analyzed. The backbone is extracted by 
the Zhang-Suen refinement algorithm. Meanwhile, the localization 
method of picking point is designed. The background noise mixed into 
the re-segmentation results is effectively suppressed. 

The remainder of this study is organized as follows. Section 2 ex
plains relevant materials; Section 3 describes the localization method in 
this research; Section 4 lists the experimental setup and evaluation in
dicators; Section 5 shows the experimental results and them; Section 6 
makes a discussion; finally, Section 7 makes conclusions and lists future 
works. 

2. Materials 

2.1. Acquisition of image data 

The opening safflower consists mainly of filaments, necks, and 
fruiting ball, characterized by wide filament spread and a large fruiting 
ball (Zhang et al., 2022). Filaments are either solitary or arranged in 
corymb-like inflorescences, and symmetrically distributed. Safflower 
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images were collected using an RGB-D camera on July 10–20, 2023 at 
the safflower planting base in Qapaqal Xibe Autonomous County, Yili, 
Xinjiang, China. The precise localization design of the safflower-picking 
robot is closely related to the physical features of the safflower in the 
opening period. The physical features of safflower are measured with the 
widely planted safflower “Jinhong 8″ as the studied object in the opening 
period. It can provide the design and theoretical basis for the optimi
zation of robot positioning schemes and structures. The measurement 
results are shown in Table 1. The position and process of the safflower- 
picking robot were simulated during the shooting, as shown in Fig. 1. 

The collected images contained different colors, postures, sizes, and 
light conditions sunny day with light, sunny day with backlight, overcast 
day with light, and cloudy day with light. According to the main ma
terial feature parameters of safflower in Table 1, the height of the 
camera from the ground was determined to be 700 mm. The angle with 
the vertical direction was 90◦, with the horizontal distance from the 
safflower of 200 mm. The camera was facing a single safflower, col
lecting the image format as.jpg and the size of 1018 × 764 pixels. A total 
of 800 safflower images were collected, including 400 test images (100 
images each of different weather conditions). Fig. 2 illustrates the 
samples for four different weather conditions. To improve the compu
tational efficiency, the original image resolution was compressed to 
1000 × 600 pixels before computation. 

2.2. Characterization of safflower-picking point 

The rectangular necking of the picking area connects filaments to the 
fruiting ball. In addition, the filament-necking area is composed of fil
aments and necking. To achieve a lower breakage rate of safflower fil
aments, the picking region needs to be sufficiently small and precise. 
The rectangular necking of the picking area includes the part of the 
necking and a few filaments at the connection site with it. The Cir-ROI of 
filament-necking is the rectangular necking of the picking area and a 
part of the filament-necking, as shown in Fig. 3. Center of the circle is 
located in the same longitudinal axis as the barycenter of the safflower 
filaments and fruit ball. Therefore, the accuracy of picking point local
ization increases when the Cir-ROI of filament-necking contains larger 
areas of the rectangular necking of the picking area. Meanwhile, the 
localized picking point can minimize the breakage rate of safflower fil
aments when the barycenter of the safflower filaments and fruit ball is 
located on the same longitudinal axis. 

3. Methods 

3.1. Method overview 

The flow of the filament-necking localization method for safflower- 
picking robots is shown in Fig. 4. The method consists of three parts: 
(i) the primary segmentation model with an improved PSO algorithm 
based on color features; (ii) the re-segmentation model with rotated 
rectangle based on geometric features; (iii) and the localization of 
picking point model using the Zhang-Suen skeleton refinement 
algorithm. 

During the localization of the picking point, the collected images of 
safflower were preprocessed. Firstly, the improved PSO algorithm based 
on color features was used for initial segmentation to extract the binary 
image of the maximum connectivity region of safflower filaments. Then, 

the rotated rectangle method based on the geometric features was used 
to solve the filaments barycenter and contour minimum outer rectangle. 
In turn, the segmentation extracted the Cir-ROI of filament-necking. 
Finally, the Zhang-Suen skeleton refinement algorithm was applied to 
the re-segmentation results to extract and design the localization of the 
picking point. 

3.2. Primary segmentation based on color features 

3.2.1. Target extraction of R-component variability 
The identification and localization of the picking point are key to 

separating the target of safflower filaments from the background (Rico- 
Fernández et al., 2019; Jiang et al., 2023). The background consists of 
surrounding safflower, foliage, branches, and other foreign objects. 
Since filaments are distinguishable in color from background features, 
color has been used as the basis for differentiation (Castillo-Martínez 
et al., 2020). Considering the complexity of light in the actual field 
environment, the factors may generate uneven lighting, shadows, and 
bright shifts, and excessive light, all of which can complicate color 
separation. Therefore, the filament-necking localization method adop
ted the RGB color model. This model was easy to implement in hardware 
and separated color and grayscale information. 

With the safflower growing, the content of red pigment in filaments 
increased gradually. The color of safflower filaments keeps changing 
from yellow to red continuously, as shown in Fig. 5. According to the 
growth features of filaments during the opening period when the fila
ments were immature, they mainly showed yellow color, as shown in 
Fig. 5(a). It made the R gray value smaller than the G gray value in the 
safflower image (R-G < 0). When the filaments were half-ripe, they 
mainly consisted of orange and yellow, as shown in Fig. 5(b) and Fig. 5 
(c). There were some regions in the image of safflower filament where 
the R gray value was smaller than the G gray value. Instead, when the 
filaments were ripe, they were red, as shown in Fig. 5(d) and Fig. 5(e). It 
made the R grayscale value of the image significantly larger than the G 
grayscale value (R-G > 0). In addition, the safflower at the time of 
shedding was crimson, but not available for picking, as shown in Fig. 5 
(f). Therefore, through the extraction of RGB color components, the 
three components were combined in the operation. The results show 
that the histogram double-peak effect of the R component for filaments 
was more obvious in the opening period, as shown in Fig. 6(a)-(c). 
However, there was no significant double-peak phenomenon in R, G, 
and B of safflower filaments in the flower-shedding period, as shown in 
Fig. 6(d)-(f). 

3.2.2. Improved PSO algorithm 
The PSO algorithm seeks the global optimum by following the 

currently searched optimum. To emphasize the difference between the 
safflower filaments and other regions, the requirement of minimum 
segmentation error is satisfied in cases where the single-peak, multi- 
peak, or double-peak effect of the RGB color component histograms is 
not satisfactory (Xue et al., 2019; Singh et al., 2021b). Meanwhile, the 
localized coarse segmentation of safflower filaments is reduced and the 
localized convergence of the edges is improved. Therefore, the PSO al
gorithm (Jatmiko et al., 2007) allows each particle to be considered a 
pixel point. The position of each particle represents the region to which 
the pixel point belongs and the velocity represents the moving speed of 
the pixel point. PSO algorithm searches the global image of safflower 
and localized convergence of the edges of filaments. After continuous 
search and iteration, the safflower images are divided into safflower 
filaments and other different regions to improve the accuracy of filament 
segmentation. 

An improved PSO algorithm is used to segment safflower images. The 
idea of the improved PSO algorithm is mainly to initialize the velocity 
and position of the particle swarm first. Then, the inertia weights are 
utilized to search for the current individual extreme value and global 
solution. Finally, the particle adaptation value is calculated and the 

Table 1 
Main material feature parameters of safflower in the opening period.  

Parameter Numerical value Mean value 

Filaments width /mm 30.44–59.35 50.33 ± 2.88 
Necking diameter /mm 2.93–6.97 5.30 ± 0.78 
Filaments height /mm 17.28–25.90 20.01 ± 2.30 
Safflower plant height /mm 643.20–783.70 700.40 ± 5.85  

Z. Xing et al.                                                                                                                                                                                                                                     



Computers and Electronics in Agriculture 215 (2023) 108464

4

velocity and position are adjusted appropriately to adapt to the scenes. 
Therefore, according to the position, speed, and experience function 
updating of filaments, the improved PSO algorithm performs a global 
search of the safflower image and quickly searches to locate the fila
ments. Then, the redesigned adaptation function is used to dynamically 
adjust the optimization search. The global search of filaments is locally 
converged on edges and non-edges to maximize the extraction of intact 
filaments. Making the population update the historical optimal 

adaptation value and position, the safflower filaments are segmented 
with the best results. 

(1) Velocity and position update function 
Since the target safflower filaments of the image are close in color to 

the other safflowers illuminated by the strong light, it makes less dif
ference in the grayscale value of the image. The PSO algorithm search 
strategy is used to guide the search through the global optimal position 
and individual optimal position (Wang et al., 2022). To search the global 

Fig. 1. Safflower-picking robots collecting images in the fields.  

Fig. 2. Images of different types of safflower: (a) sunny day with light, (b) sunny day with backlight, (c) overcast day with light, and (d) cloudy day with light.  

Fig. 3. Structure diagram of the opening safflower.  
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Fig. 4. Flow of the filament-necking localization method for safflower-picking robots.  

Fig. 5. Color change of filaments after opening on different days: (a) 1st day, (b) 2nd day, (c) 3rd day, (d) 4th day, (e) 5th day, and (f) 6th day.  

Fig. 6. Histogram of RGB components of safflower images in opening for 4–5 days: (a), (b), and (c) are the R, G, and B component histograms in the opening period, 
respectively. (d), (e), and (f) are the R, G, and B component histograms in the flower-shedding period, respectively. 

Z. Xing et al.                                                                                                                                                                                                                                     



Computers and Electronics in Agriculture 215 (2023) 108464

6

safflower position quickly, the particle swarm optimization search 
strategy is used for global position optimal search. 

The speed update function is shown in Eq. (1): 

vk
e = ωvk− 1

e + c1r1

(
xk− 1

p − xk− 1
e

)
+ c2r2

(
xk− 1

g − xk− 1
e

)
(1)  

where vk
e denotes the current kth iteration particle e velocity; w denotes 

the inertia weight; c1 and c2 denote the acceleration constants; r1 and r2 

denote two stochastic functions with values in the range of [0, 1]; xk− 1
p 

denotes the historical optimal position of particle e in the kth iteration; 
xk− 1

g denotes the historical optimal position of the population in the kth 
iteration. 

The position update function is shown in Eq. (2): 

xk
e = xk− 1

e + vk− 1
e (2)  

where xk
e denotes the position of particle e after updating in the kth 

iteration. 
(2) Design of nonlinear functions for inertia weights. 
As the global safflower is interfered with by many external factors, 

the safflower images have a complex background environment. Conse
quently, the accuracy of the local search for the target safflower fila
ments edges is reduced after the global search. The unsatisfactory 
segmentation effect affects the subsequent re-segmentation and locali
zation results of the picking point. Therefore, considering that the value 
of inertia weight ω affects the performance of PSO, the inertia weight ω 
nonlinear function is redesigned with the PSO algorithm and the char
acteristics of safflower filaments. 

Larger values of the inertia weights ω are associated with strong 
global optimization search and weak local optimization search. 
Conversely, the local optimization ability is powerful. To achieve a 
balance between search speed and search accuracy, the algorithm has a 
high global search ability in the early stage to obtain suitable particles. 
At the later stage, there is a high local search ability to improve the 
convergence accuracy. It means that the inertia weights ω decreases 
nonlinearly with the increase in the number of iterations. Larger inertia 
weights ω have better global convergence ability, while smaller inertia 
weights ω have stronger local convergence ability. Currently, most al
gorithms set the inertia weights to decrease linearly with the increase of 
iterations (Singh et al., 2021b; Sabzi et al., 2019; Zou et al., 2022). 
However, the linearly decreasing strategy does not work well for dy
namic systems. Therefore, a dynamic inertia weight strategy that de
creases nonlinearly with the number of iterations is proposed. 

The improved inertia weights ω nonlinear function is shown in Eq.3: 
⎧
⎪⎨

⎪⎩

ωmin +
ωmax − ωmin

e− ωmax + e− C+50 T
Tmax

, 0 ≤ C <
T

Tmax
≤ 0.5

ωmax, otherwise
(3)  

where ωmax denotes the maximum value of inertia weights ω, ωmin de
notes the minimum value of inertia weights ω, C denotes a random 
constant, T denotes the current iteration step, and Tmax denotes the 
maximum number of iterations, 50 denotes the iteration constant, which 
is obtained from the previous experiment. 

(3) Design of the fitness function 
To enhance the difference between the grayscale of the safflower 

filaments and the branch leaves or other filaments, the same fitness 
function is used to avoid the disadvantage that the algorithm tends to 
fall into local extremes. The collected images are processed separately 
using the grayscale operator represented by each particle in the popu
lation. The mean difference and grayscale images variance of the saf
flower filaments, branches or leaves, and other filaments are used as 
evaluation indexes. 

When the local size of safflower filaments images is M × N, the 
window center coordinates are (m, n). The mean difference is more 
beneficial to the grayscale of images. It is calculated as shown in Eq. (4). 

E =
1

MN
∑
M
2 − 1

i=− M
2

∑
N
2 − 1

j=− N
2

h(m + i, n + j) (4)  

where E denotes the grayscale of images, and h (m + i, n + j) denotes the 
gray value of the image to be segmented. 

When the grayscale standard deviation s’ is smaller, it is more 
beneficial to grayscale the image of safflower filaments. The calculation 
is shown in Eq. (5). 

(s′)2
=

1
M(N − 1)

∑
M
2 − 1

i=− M
2

∑
N
2 − 1

j=− N
2

[h(m + i, n + j) − E ]
2 (5)  

where s’ denotes the standard deviation in the local neighborhood. 
Localization of the picking point needs to meet the picking demand 

with the shortest time and fastest localization (Benbarrad et al., 2021). 
When designing the fitness function, the minimum error and running 
time of the optimization PSO algorithm should be considered compre
hensively to improve localization accuracy. To integrate E and s’ with 
large differences, the logarithm and reciprocal of each object are 
calculated to add up to obtain the objective function. The larger 
fittingness function value indicates that the individual is more optimal. 
The specific design process of the fitness function is shown in Eq. (6). 

f (x) =
1

lg(E)
+

1
lg(s′)2 (6) 

The safflower filaments were processed using the grayscale operator 
to obtain the grayscale map of filaments ROI (Xiang, 2018). However, 
using the OTSU (Gao and Lin, 2018) and iterative algorithm (Almou
jahed et al., 2022), the segmentation results were often caused by mis- 
segmentation cases, such as burrs, isolated points, and partial scat
tering noise due to thresholding errors. Consequently, the noise filtering 
operation of safflower images was cumbersome and occupied a long 
time. However, the improved PSO algorithm could cope with different 
noises in the safflower filament images and realize the adaptive 
threshold value. Meanwhile, the time of manually setting the threshold 
value was saved in the detection process, so that the improved PSO al
gorithm could be better utilized in practical production. Therefore, the 
maximum number of iterations was set to 50 as the termination condi
tion of the algorithm. Using the improved PSO algorithm to the gray
scale of ROI, the binary image of safflower filaments with less noise was 
segmented. 

After image segmentation, there were still some noises (burrs, iso
lated point, and partial scattering noise) in the segmented image. The 
binary image was denoised and filled using a closed operation followed 
by an open operation. Then the closed operation could effectively 
remove the burr and isolate noise caused by the thresholding error, and 
could also cause the formation of some obvious holes in the crop (Liu 
et al., 2016). However, the open operation could be filled with holes 
(Granland et al., 2022). Moreover, the binary image of the maximum 
connected region for the safflower filaments was retained. The effects of 
the morphological treatment are shown in Fig. 7. 

3.3. Re-segmentation based on geometric features 

To improve the accuracy of localization and the preservation of 
intact filaments, removing the image noise affected the localization of 
the picking point to the features of the diversity in safflower growth. The 
Cir-ROI of filament-necking was selected. When calculating the picking 
point, only the images within the Cir-ROI were processed. Reducing 
interference in localization caused by image regions that are not related 
to the picking point solution (Ulzii-Orshikh et al., 2017). 

3.3.1. The barycenter and minimal outer rectangle of safflower filaments 
Barycenter is the geometric center of safflower filament images. 
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Combined with section 3.2.3 to obtain the binary image, the barycenter 
point of safflower filaments was solved for the binary image according to 
the definition of barycenter moments. The barycenter coordinates (xc, 
yc) were obtained. The calculation is shown in Eq. (7). 
{ xc =

∑
xf (x, y)/

∑
f (x, y)

yc =
∑

yf (x, y)/
∑

f (x, y)
(7)  

Where xc denotes the barycenter horizontal coordinate of the image; yc 
denotes the barycenter vertical coordinate of the image; x,y denote the 
pixel coordinates; and f(x,y) denotes the pixel value of the binary images 
at point (x,y). 

For the inclined growth of safflower filaments, the filament-necking 
localization method adopted the rotating rectangle algorithm based on 
the features of geometric features. After obtaining the barycenter co
ordinates, the left, right, up, and down extreme value lines were solved 
for the maximum connectivity region. Based on the contour boundary of 
the extreme point, the smallest rectangle containing the contour point 
was located. Then, the center and angle of the rectangle were used to 
define the rotation rectangle to accommodate the inclined growth 
feature. Thus, the minimum outer rectangle contained more pixel point 
of the target. According to the minimum outer connecting rectangle and 
barycenter coordinates, the ROI of the safflower filament and the 
maximum left and right lengths of the bottom edge Lmax were output on 
the original map, as shown in Fig. 8. 

3.3.2. Determination of the Cir-ROI 
To decrease the difficulty of segmentation and ensure the validity of 

the picking point, the Cir-ROI of filament-necking was determined based 
on the barycenter and the minimum outer rectangle. Given the small 
horizontal difference between the horizontal coordinates of the fila
ments barycenter and the horizontal coordinates of the necking rect
angle center, the maximum length of the bottom edge for the minimum 
outer rectangle Lmax passed through the region of the necking rectangle 
picking. Therefore, the horizontal coordinate x3 of the center point of 
the Cir-ROI was selected as the horizontal coordinate x1 of the filament 
barycenter, and the vertical coordinate y3 was selected as the vertical 
coordinate y2 of the midpoint of the bottom edge of the minimum outer 
rectangle. 

However, the rectangular necking of the picking area was small in 
both length and width relative to the safflower filaments. There was a 
certain offset for the center of the Cir-ROI. Both of them would lead to 
the partial exclusion of the rectangular necking of the picking area. To 
make the Cir-ROI of filament-necking retain more of the rectangular 
necking of the picking area and the division more obvious, the circular 
radius was divided into two cases based on the relevant data on fila
ments width, height and necking in Table 1. (i) When the difference 
between the longitudinal coordinates of filament barycenter y1 and the 
longitudinal coordinates of the smallest outer-connecting rectangle 
midpoint y2 were less than or equal to Lmax, the circular radius was 
adopted by taking 2/3 of the difference of both, as shown in Fig. 9a. (ii) 
When the difference was greater than Lmax, the adoption of the circular 
radius took 1/6 of the maximum left and right length Lmax, as shown in 
Fig. 9b. The calculation is shown in Eq. (8). 

r =

⎧
⎪⎪⎨

⎪⎪⎩

2
3
|y1 − y2|, |y1 − y2| ≤ Lmax

1
6

Lmax, |y1 − y2| > Lmax

(8)  

where r denotes the radius of the Cir-ROI; y1 denotes the longitudinal 
coordinate of the center of filament barycenter; y2 denotes the longitu
dinal coordinate of the highest point in the minimum outer rectangle of 
the safflower filament; and Lmax denotes the maximum left and right 
length of the bottom edge in the minimum outer rectangle. 

3.4. Localization of picking point 

Obtaining information on the exact location of the safflower-picking 
point can decrease the breakage rate of filaments and retain their 
integrity. After determining the Cir-ROI, the information on the necking 
was used in image segmentation and morphology of section 2.3.2 pro
cessing methods to obtain the exact position information of the 
safflower-picking point. Using the open or close operation and the filling 
algorithm employed to trim the edge burrs of the image and fill in the 
effective region of the necking that had been segmented incorrectly, the 
grayscale images were converted to a binary image. Further, the sub
traction operation of the binary image was done to get the necking bi
nary image, as shown in Fig. 10 (a)and Fig. 10 (b). Having preprocessed 

Fig. 7. The process of safflower filaments images segmentation: (a) original image, (b) binarization, (c) morphological arithmetic, and (d) the maximum con
nected area. 

Fig. 8. Morphological parameters of safflower filaments image: (a) safflower filaments bivalent image, (b) safflower filaments barycenter and minimal outer 
rectangle, and (c) safflower filaments original image markers. 
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the Cir-ROI of filament-necking, the necking skeleton needed to be 
extracted and localized. The Zhang-Suen refinement algorithm (Leb
orgne et al., 2015; Janković, 2022) was used to make its pixel width 
smaller and refine the necking as a whole. Furthermore, the remaining 
pixel point was composed of the connective skeleton. The obtained 
image of the skeleton was beneficial in determining the location of the 
picking point, as shown in Fig. 10 (c). 

Since the skeleton is mostly distributed in disordered vertical lines, 
the filament-necking localization method was conducted by traversing 
the entire binary image of the necking skeleton. The main purpose was 
to search for the smallest value of the horizontal and vertical coordinate 
pixel point in the binary image of the skeleton. The smallest value was 
determined as the picking point, as shown in Fig. 10 (d). The minimum 
horizontal coordinate x pixel value was set as the horizontal coordinate 
of the picking point. The minimum vertical coordinate y pixel value was 
set as the vertical coordinate of the picking point. The result of the 
calculation was used as the safflower-picking point. Meanwhile, the 
picking point was marked with a solid blue circle. The picking point 
calculation formula is shown in Eq. (9). 
{

Fx = Gx
Fy = Gy

(9)  

where Fx and Fy are the horizontal and vertical pixel values of the 
picking point, respectively; and Gx and Gy are the minimum horizontal 
pixel value and minimum vertical pixel value obtained by traversing the 
neckdown skeleton, respectively. 

4. Experimental setup 

4.1. Test platform 

The test platform was chosen as follows: (i) the safflower-picking 
robots were mainly composed of a computer, a central control cabinet, 
an RGB-D camera, a filament collection box, and an end-effector; (ii) a 
software environment with Windows 11 system, and a python 3.8.8 
development environment using the Visual Studio Code software for 
compilation and analysis; (iii) a computer with the hardware configu
ration of Intel(R) Xeon(R) Silver 4116 CPU@2.10 GHz, 64 GB RAM, and 
NVIDIA Quadra P5000 graphics card; (iv) RGB-D Camera with Intel 
RealSense D435 camera. 

4.2. Evaluation indicators 

In the testing session, 400 test images of safflower were detected 
using the filament-necking localization method. Meanwhile, four as
pects are compared in terms of segmentation correctness, running time, 
and accuracy of picking point. 

(1) Average relative target area error rate. 
To objectively evaluate the effectiveness of the segmentation method 

proposed, the average relative object area error rate was chosen to 
quantitatively evaluate the quality of safflower extraction (Wang et al., 
2019b). The calculation is shown in Eq. (10). 

Rr =

∑N
i=1

⃒
⃒
⃒
⃒

A1 − A2
A1

⃒
⃒
⃒
⃒

Nc
× 100% (10)  

where i denotes the ith test image, Nc denotes the number of test images, 
A1 denotes the area of the target region in the actual safflower image, 
and A2 denotes the area of the target region in the test image. 

The area of the target region in the actual safflower image was ob
tained manually by manual segmentation through Photoshop, and the 
area of the target region was expressed in terms of the number of pixels 
in the region. The number of pixels was obtained through Visual Studio 
Code software. 

(2) Average running time. 
The average running time t (Wang et al., 2019b) is defined as shown 

in Eq. (11). 

t =
ta

Nc
(11)  

where ta is the total elapsed time for recognizing Nc images to be tested. 
(3) Accuracy of picking point. 
To analyze the accuracy of picking point localization, pixel locali

zation error was used as the main index (Luo et al., 2015), as shown in 
Eq. (12). 

Fig. 9. Determination of Cir-ROI: (a) |y1 − y2| ≤ Lmax, and (b) |y1 − y2| > Lmax.  

Fig. 10. The localization process of picking point: (a) the Cir-ROI of filament- 
necking, (b) color component binary image of Cir-ROI, (c) extraction of the 
necking skeleton, and (d) calculated picking point. 
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
e2

x + e2
y

)√

ex = min|X − x|
ey = min|Y − y|

(12)  

Where X and Y denote the pixel region of the optimal picking point; x 
and y denote the pixel coordinates of the picking point obtained by the 
present method; ex and ey denote the row and column direction errors of 
the obtained picking point to the pixel region of the optimal picking 
point, respectively; and e denotes the total pixel localization error of the 
obtained picking point. 

(4) Intersection Over Union 
To test the performance of the proposed algorithm, the Intersection 

Over Union (IOU, %) is chosen as an index to evaluate the effectiveness 
of the model, as shown in Eq. (13): 

IOU =
area(AP ∩ AT)

area(AP ∪ AT)
(13)  

where AP is the predicted value; AT is the true value; and IOU is the 
overlap between the safflower predicted bounding box and the safflower 
true bounding box. 

5. Experimental results 

5.1. Comparison of different segmentation methods 

To verify the adaptability and effectiveness of the improved PSO in 
complex backgrounds, 400 images of safflower under different weather 
lighting are detected. The typical detection results are shown in Fig. 11. 
The segmentation results are compared with the segmentation results of 
the OTSU algorithm, iterative algorithm, CDMS segmentation algorithm 
(Zhou et al., 2022), CondInst segmentation algorithm (Tian et al., 2022), 
and MDE-UNet (Wang et al., 2023) to assess the various performances of 
the algorithm. 

The OTSU algorithm segmentation was a commonly used image 
segmentation method (Gao and Lin, 2018). However, the complexity of 
the safflower filaments background, coupled with changes in light 

intensity, made the target safflower filaments similar to the background 
color. The segmentation effect of the iterative algorithm was similar to 
the segmentation effect of the OTSU algorithm. Both of the results were 
prone to large-area mis-segmentation and worse segmentation effects. 
Occasionally, the phenomenon of greater noise occurs. In addition, the 
CDMS, CondInst, and MDE-UNet, which were currently used in top 
journals, still had serious background segmentation for safflower fila
ments with complex backgrounds. For example, CDMS and CondInst 
segmentation algorithms had poor segmentation effects due to the high 
similarity of color and morphological features caused by the large 
variation of illumination. MDE-UNet also had the problem of large noise 
and large segmentation errors, which could not completely segment 
safflower filaments. According to the related segmentation algorithm 
(Almoujahed et al., 2022), the main reason for the poor segmentation 
effect was that the use of iterative or OTSU algorithm of grayscale image 
segmentation, resulting from the target filaments and the color of the 
background was close to making the three grayscale value differences 
was not large. Therefore, there was no obvious “bimodal peak” in the 
grayscale histogram, resulting in a worse segmentation effect of the 
iterative or OTSU algorithm. 

Compared with the segmentation results of the OTSU and iterative 
algorithm, the safflower region of the grayscale processed was enhanced 
with the optimization of a method by the improved PSO algorithm. The 
improved PSO algorithm could accurately segment the safflower fila
ments from the complex background of other filaments, and strongly 
illuminated leaves, as shown in Fig. 11. Meanwhile, the improved PSO 
algorithm could be more effective in overcoming the influence of strong 
light brought about by non-uniform illumination. Excellent segmenta
tion results were still achieved under cloudy day with light conditions. 

Fig. 12 shows the performance indicators of different methods for 
segmenting images in Fig. 11. 

Fig. 12 demonstrates the average relative target area error rate and 
average running time of different methods for image segmentation 
under four conditions. The iterative segmentation and OTSU algorithm 
mistakenly segmented other filament regions and the background region 
of strongly illuminated branches and leaves as filaments. The area of the 
target safflower filaments region of the test image was larger than the 
area of the actual, resulting in a low average relative target area error 

Fig. 11. Grayscale and segmentation results of safflower images under different weather conditions I. sunny day with light, II. sunny day with backlight, III. overcast 
day with light, and IV. cloudy day with light. 
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rate. The OTSU, iterative, CDMS, CondInst, and MDE-UNet algorithms 
were 47.43 %, 44.49 %, 45.22 %, 55.93 %, and 62.27 %, respectively. 

From the average index of segmentation performance, a sunny day 
with light had better segmentation results than a sunny day with 
backlight, with a maximum difference of 11.76 %. An overcast day with 
light had better segmentation results than cloudy day with light, with a 
maximum difference of 26.13 %. It was shown that the lighting condi
tions influenced the segmentation of the 5 algorithms. From the overall 
situation, the filament-necking localization method had better seg
mentation results under sunny day with light and backlight conditions. 
Segmentation effects were well under a sunny day with light and 
backlight conditions, but an overcast day with light was better than a 
cloudy day with light for segmentation. The average relative target area 
error rate was lower by 6.56 %. The improved PSO algorithm had the 
lowest average relative target area error rate among the 5 algorithms, 
with 28.1 %, 25.16 %, 25.89 %, 36.60 %, and 42.94 % lower than the 
OTSU, iterative, CDMS, CondInst, and MDE-UNet algorithms, 
respectively. 

From the IOU index, the IOU value of the improved PSO algorithm 
was significantly higher than the other 5 algorithms by more than 17.82 
%. The reason was mainly that the background of the safflower filament 
was complex and variable, and the surrounding branches, leaves, and 
filaments were extremely similar to the filament color and texture fea
tures. The improved PSO algorithm utilized the improved PSO for local 
search and convergence, and more finely segments the filaments, but the 
other 5 algorithms showed worse local convergence and segmentation 
ability. 

From the time indicators, the average running time on 400 images, 
improved PSO algorithm spent less time relative to the OTSU and the 
iterative algorithm. The average processing time of the improved PSO 
algorithm was lower than the OTSU, iterative, CDMS, and CondInst al
gorithms by 0.09 s, 0.17 s, 0.06 s, and 0.04 s, respectively. The average 
relative target area error rate was lower than the iterative algorithm 
segmentation and the OTSU algorithm segmentation. The average 
running time was the same as that of MDE-UNet, but its average relative 
target area error rate and IOU were significantly lower than that of the 
improved PSO algorithm. 

5.2. Picking point localization algorithm 

To demonstrate the effectiveness of the method, the performance of 
the picking point localization algorithm proposed in this study is eval
uated by two metrics: precision and recall. The precision and recall are 
defined as follows: 

Precision =
TP

TP + FP
(14)  

Recall =
TP

TP + FN
(15)  

Where TP is the number of correctly identified picking points, FP is the 
number of incorrectly identified picking points, FN is the number of 
unidentified picking points. 

There have been many studies on picking point localization in crops. 
To verify the effectiveness of the proposed algorithms, the three latest 
picking point localization algorithms are selected for discussion. If the 
localized picking point was located in the necked rectangular picking 
area corresponding to safflower filaments, the localization was consid
ered successful. Otherwise, it was judged as a localization failure. The 
400 images under four weather conditions were tested. The comparison 
of relevant performance metrics is shown in Table 2. 

MobileNetV2 (Li et al., 2023a,b) mainly utilized the algorithm to 
obtain the contour key points and necking key points of safflower fila
ments. Through the effective prediction of these two key points, the 
picking point was obtained. YOLACT (Zhong et al., 2021) performed 
skeleton extraction based on the mask of the necking and then used the 
least squares method to fit the necking spindle to calculate the picking 

Fig. 12. Performance indicators of different algorithms for segmenting images.  

Table 2 
Localization performance test results of the four models.  

Literature TP FP FN Precision/% Recall/% 

MobileNetV2 234 80 86  74.52  73.13 
YOLACT 287 57 56  83.43  83.67 
Improved Swin Transformer V2 301 39 60  88.53  83.38 
Improved PSO 368 11 21  97.10  94.60  
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point. Improved Swin Transformer V2 (Rong et al., 2023) determined 
the ROI of the necking and performed the edge detection and the cu
mulative probability Hough transform on the necking. The final picking 
point was determined based on the relationship between necking and 
filaments barycenter. The improved PSO algorithm was to determine the 
Cir-ROI of filament-necking and search for the value with the smallest 
coordinate pixel point in the binary image of the skeleton, which was 
determined as the picking point. As shown in Table 2, the algorithm 
proposed in this study performs best on the filament dataset with the 
highest precision and recall, 97.10 % and 94.60 %, respectively. How
ever, MobileNetV2 had a poor performance on the filament dataset. The 
main reason was the poor accuracy of detecting necking and the use of a 
crude picking point localization method. YOLACT and Improved Swin 
Transformer V2 showed relatively improved localization results, with 
8.91 %, 10.54 %, and 14.01 %, 10.25 % improvement in precision and 
recall, respectively. The main reason was that the two algorithms paid 
attention to the intrinsic relationship between necking and picking 
points. Nevertheless, they hadn’t paid attention to the complex and 
changing background of the image, and the small area of necking, which 
was still poorer compared to the localization effect of the improved PSO 
algorithm. 

5.3. Localization results of picking point 

The 400 test images of safflower were selected for validation under 
four weather conditions, including 100 images each under different 
weather conditions. During the picking point localization, the Cir-ROI of 
filament-necking, skeletonization, and localization results are shown in 
Fig. 13. 

Using the filament-necking localization method, the pixel 

coordinates of the barycenter and the picking point of the 400 test im
ages were calculated under four different weather conditions. The 
necking rectangular picking area (160 × 80 pixels) was used as the 
localization of the optimal picking point, for calculating the error be
tween the picking point and optimal picking point. Table 3 shows the 
results of the picking point and pixel localization error for the four im
ages in Fig. 12. 

Table 3 demonstrates the coordinates/pixel of the safflower bary
center and picking point, and the error/pixel from the optimal picking 
point under different weather conditions. The testing results show that 
the pixel error from the optimal picking point is less in the X (row) di
rection. When the obtained picking point x-value is within the range of 
X, the ex was 0. However, there were 2 to 8 pixel errors between the 
optimal picking point and the optimal picking point in the Y (column) 
direction. 

The filament-necking localization method had no error between 
picking points/pixels and optimal picking points under a sunny day with 
backlight. Meanwhile, the terms of localization accuracy were slightly 
better than the smooth light. The reason lay in the change in lighting 
conditions. Backlighting improved the light intensity and brightness on 
the safflower images and weakened the background color overlap 
caused by strong light. It was more beneficial localization for picking 
point. However, the error between the obtained picking point and the 
optimal picking point under a sunny day with light was 4 pixels more 
than under a sunny day with backlight. Sunny day with light increased 
light intensity and brightness in the safflower images. Because the saf
flower filaments themselves blended with the complex surrounding 
environments, especially other safflower filaments, the different color of 
the localization safflower was the same as the surrounding background. 
In addition, when incomplete extraction of the safflower image resulted 

Fig. 13. Localization process of picking point under 4 weather conditions.  

Z. Xing et al.                                                                                                                                                                                                                                     



Computers and Electronics in Agriculture 215 (2023) 108464

12

in too large an error in the computation of the barycenter, the locali
zation of the picking point led to a bias. 

Pixel localization error statistics were performed on 400 test images. 
The error distribution is shown in Table 4. 

Combined with the filament-necking localization method in skele
tonizing the Cir-ROI of filament-necking, the detection was usually 
based on the morphological features of the crop. The detected line 
segments were located at the edge of the indented neck. When the Y- 
direction was prone to pixel error, the calculated picking point had e ≥ 8 
pixels. The different weather lights affected the safflower color differ
ence. It resulted in the proportion of Cir-ROI satisfying localization with 
sunny and cloudy day with light being 88 % and 83 %, respectively. Both 
of them were lower than that of sunny backlight and cloudy day with 
light both exceeding 5 %, and the average running time was more than 
0.20 s. Therefore, the Cir-ROI of filament-necking had to satisfy the 
localization requirement by picking a point within the rectangular 
picking area of the necking rectangle. Meanwhile, the picking point 
needed to satisfy e < 8 pixels. The reason was mainly that the backlight 
on a sunny day was relatively soft in brightness due to low light in
tensity. The highest proportion of Cir-ROI satisfying localization was 95 
% under sunny days with backlight conditions. Therefore, combining 
the picking point localization results of 400 test images, the overall 
localization accuracy of the picking point was 89.75 %. 

In addition, overcast day with light had better recognition accuracy 
than cloudy day with light. Because of the weaker light intensity on 
overcast days with light, the color of the necking part is highlighted in 
the Cir-ROI of filament-necking stand out. Simultaneously, there was 
less irrelevant information, so the localization of the picking point was 
less prone to bias. In contrast, cloudy day with light was often accom
panied by changes in light and was unstable in light intensity. Therefore, 
the rectangular necking of the picking area was difficult to distinguish, 
leading to a large deviation in the localization of the picking point. 

5.4. Field experiments 

The picking robot for the field experiments was based on an XYZ 3- 
axis sliding module as platform, end-effector as picking device, and an 
RGB-D camera as vision core, as shown in Fig. 14 (a). The method 
proposed in this study was verified in the field environment. Fifty field 
experiments were conducted under the conditions of sunny day with 
light, sunny day with backlight, cloudy day with light, and cloudy day 

with light, respectively. The results of camera localization for picking 
point are shown in Fig. 14 (b). In addition, the breakage rate of filaments 
was the percentage of the weight of broken and shattered filaments in a 
single safflower picked as compared to the total weight of the picked 
filaments. The results of filaments picking after localization are shown in 
Fig. 14 (c). 

The localization data are shown in Table 5. The results showed that 
the highest success rate of 93 % was achieved in locating safflower 
filament harvesting points under sunny backlight conditions. The anal
ysis showed that safflower filaments under cloudy light were affected by 
light and other objects shading, resulting in blurring of the color and 
texture characteristics of the filaments. The localization success rates of 
the filament picking point were lower than 2 % under other weather 
conditions, the breakage rates of filaments were higher than 0.54 %, and 
the average running times were higher than 0.025 s. 

6. Discussion 

Compared with the other visual localization methods (Gongal et al., 
2015a) with worse resistance to background noise and large localization 
error, the filament-necking localization method had the following 
characteristics. (i) The PSO algorithm was improved to enhance the 
global and local search capability. The interference of the background 
region was effectively reduced on safflower filament detection. (ii) The 
Cir-ROI of filament-necking was re-segmented with a rotated rectangle 
algorithm. The problem of picking point localization error was mitigated 
due to variations in light intensity and plant shading. (iii) Analysis of 
safflower features was introduced to combine the primary segmentation 
and re-segmentation results. Using skeleton extraction to determine 
reasonable picking point locations suppressed effectively the back
ground noise from mixing into the re-segmentation results. 

The experimental results have shown that the segmentation results 
obtained with the filament-necking localization method were closer to 
the real safflower image than other methods. The average processing 
time of the improved PSO algorithm was lower than the OTSU and the 
iterative algorithm by 0.09 s and 0.17 s, respectively. The average 
relative target area error rate was lower than the OTSU method by 
28.10 % and the iterative method by 25.16 %. Meanwhile, the Cir-ROI of 
filament-necking satisfied the localization were all above 80 %. In 
addition, the localization accuracy of the picking point reached 88.33 %. 
The filament-necking localization method was adaptable to different 
weather light changes. In the comprehensive analysis, the positioning 
accuracy of the picking point was higher under sunny and cloudy day 
with light conditions. In particular, the backlight localization on sunny 
days was the best, reaching 95 %. Although the filament-necking 
localization method was designed for safflower, the method is infor
mative for image segmentation of a single target under a complex 
background and similar crop picking in the target area. 

In the process of safflower filaments picking, the current method 
mainly solves the single filaments. However, for multiple safflower fil
aments localization problems, the filament-necking localization method 
in this study can be combined with the connected region. By calculating 
the number of filaments in multiple connected regions and locating each 
of them in turn, the segmentation effect is shown in Fig. 15. The local
ization of multiple safflower filaments is finally realized. Therefore, the 

Table 3 
Picking point and pixel localization errors.  

Weather conditions Barycenter coordinates/ 
pixel 

Optimal picking point range/pixel Obtain the picking point/ 
pixel 

Error/pixel from optimal picking 
point 

Radius 

X3 Y3 X Y x y ex ey e r 

Sunny day with light 370 271 313 ~ 463 348 ~ 428 317 344 0 4 4 172 
Sunny day with backlight 319 190 201 ~ 361 220 ~ 300 237 250 0 0 0 127 
Overcast day with light 220 135 198 ~ 348 157 ~ 237 198 192 0 0 0 167 
Cloudy day with light 221 194 186 ~ 336 200 ~ 280 188 231 0 6 6 63  

Table 4 
Localization of picking point under 4 weather light conditions.  

Weather 
conditions 

Original 
image/ 
frame 

e < 8 
pixels 

Percentage of Cir- 
ROI that satisfy 
localization 

Average 
running 
time/s 

Sunny day 
with light 

100 88 88  0.205 

Sunny day 
with 
backlight 

100 95 95  0.171 

Overcast day 
with light 

100 93 93  0.188 

Cloudy day 
with light 

100 83 83  0.229  
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proposal can provide a reference for multiple subsequent studies on 
filament localization and quality picking. 

7. Conclusions and future works 

Influenced by complex environments of light intensity changes and 
crop shadows, the color and texture features of safflower became un
clear. Safflower-picking robots had difficulty with safflower recognition 
and picking point localization. To solve the above difficulties in saf
flower identification and picking point localization, combining 
improved PSO with a rotated rectangle algorithm based on the filament- 
necking localization method for safflower-picking robots was proposed. 

In the future, the primary segmentation and re-segmentation algo
rithms in the filament-necking localization method need to be further 
optimized. (i) The improved PSO algorithm handles the computational 
efficiency inefficiently during the primary segmentation. (ii) The cir
cular ROI can be appropriately reduced to better fit the region of the 
picking point for different sizes of safflower filaments. In addition, the 
computational efficiency of the method should be improved if the 
method was applied for some tasks running in real time, such as disease 
localization spraying of safflower. 
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