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A B S T R A C T   

G. barbadense is renowned for its high-quality fiber and is highly regarded as a natural material in the textile 
industry. However, research on cotton has mainly focused on G. hirsutum, and progress in sea island cotton has 
been relatively slow. There was limited understanding of the genetic loci and transcriptional regulatory mech
anisms of important traits, and the genetic basis for the development of superior traits remains unclear. In this 
study, a recombinant inbred line (RIL) population was constructed using two sea island cotton parents from 
different cotton regions. The phenotypic characteristics of the two parents and the RIL population, as well as the 
phenotypic correlations, heritability, and genetic models of the RIL population, were comprehensively analyzed. 
The RIL population was genotyped using whole-genome resequencing technology, and a high-density intraspe
cific linkage map was constructed, consisting of 5295 bin markers and a total genetic map distance of 2721.79 
centimorgans (cM). Phenotypic data collected from five different environments were used to detect 169 quan
titative trait loci (QTLs) using the composite interval mapping method. Among these QTLs, 30 were related to 
agronomic traits, 61 were related to yield traits, and 78 were related to fiber quality traits. Additionally, 17 QTL 
clusters were detected, and the additive effects of these clusters explained the correlation between different 
phenotypic traits. Candidate genes for stable QTLs related to agronomic and yield traits were identified through 
variant annotation and functional prediction. Two bin markers associated with lint percentage (LP) were vali
dated as potential breeding markers. Furthermore, using RNA-seq data of cotton fiber from the RIL population 
parents, the dynamic changes in gene expression during different developmental stages of cotton fiber were 
revealed, and important differentially expressed genes in the secondary cell wall development and metabolism 
network of fibers were identified. Importantly, through the combined analysis of fiber trait QTLs and tran
scriptomes, eight candidate genes involved in regulating fiber quality traits were predicted, and the genetic basis 
of the excellent allele site qFL_D04_1 in the breeding history of Chinese sea island cotton was elucidated. In 
summary, this study provides new genetic resources and potential breeding markers for cotton variety 
improvement, valuable theoretical information for understanding the genetic basis of important traits in sea 
island cotton, and effectively promotes the development of cotton biotechnology breeding.   

1. Introduction 

Cotton is one of the world’s important economic crops, accounting 
for 35% of the global total fiber production as a renewable resource 
(Wen et al., 2023). Cotton fiber products have excellent breathability 
and moisture absorption, and the unique comfort makes cotton textiles 

highly demanded and favored in society. In global cotton production, 
upland cotton, with its wide adaptability and high yield, accounts for 
over 95% of the total cotton production, while sea island cotton, with its 
superior fiber quality, is regarded as the "diamond in fibers," but its 
production only accounts for 2%-4% (National Cotton Council, htt 
p://www.cotton.org). Sea island cotton complements the traits of 
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upland cotton (Hu et al., 2019), and breeders have adopted different 
breeding strategies. However, it has been proven that the offspring of 
traditional breeding techniques for intercrossing between sea island and 
upland cotton exhibit extreme segregation or even lethality, making it 
difficult to develop high-yielding, high-quality, and multi-resistant 
cotton varieties (Deng et al., 2019; Zhang et al., 2014). Under the 
modern cotton production model, sea island cotton production faces a 
series of bottlenecks, such as high homogeneity of varieties, inconsistent 
fiber quality, and low economic benefits, leading to a gradual reduction 
in planting area (Yuan et al., 2018; Zhang et al., 2023; Zheng et al., 
2022), which severely affects the stability, competitiveness, and sus
tainable development of the sea island cotton industry chain. 

The important economic traits of cotton are complex quantitative 
traits controlled by multiple genes, influenced by minor-effect polygenes 
and environmental factors (Li et al., 2023). The developmental process 
involves complex biological regulation of morphological and molecular 
dynamics (Wen et al., 2023), with extremely intricate genetic mecha
nisms. Furthermore, the characteristics of allopolyploid bring 
complexity and uncertainty to cotton improvement (Wendel and Grover, 
2015). The negative correlations among important economic traits of 
cotton undoubtedly pose greater obstacles to simultaneous improve
ment. Therefore, outdated breeding theories and single breeding 
methods are insufficient to cultivate high-yielding, high-quality, and 
multi-resistant cotton varieties. 

Genetic marker technology is an important tool in genetic research. 
It has evolved rapidly since Mendel’s discovery of 7 pairs of morpho
logical markers and Watson-Crick’s revelation of the nature of genetic 
material (Watson and Crick, 1953). In 1994, Reinisch et al. first con
structed a relatively complete restriction fragment length polymorphism 
(RFLP) genetic map for inter-specific sea island and upland cotton 
(Reinisch et al., 1994), marking the beginning of molecular genetic map 
research in cotton. In the early studies, most of the maps constructed 
were inter-specific maps considering the polymorphism between par
ents. However, inter-specific genetic maps resulting from sea island and 
upland cotton hybridization are not applicable to genetic improvement 
of either upland or sea island cotton (Wang et al., 2019). As a result, 
some researchers began to construct intra-specific genetic maps 
(Shappley et al., 1998), but the low polymorphism and limited number 
of markers resulted in low genome coverage. In 2012, the draft genome 
of Gossypium raimondii was published (Wang et al., 2012), marking a 
milestone in cotton biological research. Subsequently, the cost of 
sequencing greatly decreased, leading to an explosive growth of cotton 
genomic sequencing data (Li et al., 2015a, 2021; Wang et al., 2019), 
providing researchers with new perspectives and tools and promoting 
the development of population genetics. Single nucleotide poly
morphism (SNP) markers, as third-generation molecular markers, have 
been widely used in the construction of cotton genetic maps. For 
example, Zhang et al. integrated four different types of markers to 
construct a high-density genetic map of a recombinant inbred line (RIL) 
population (0–153×sGK9708) with 8295 markers, a total genetic dis
tance of 5197.17 cM, and an average distance of 0.88 cM (Zhang et al., 
2020). Gu et al. used 6187 bin markers to construct a high-density ge
netic map of a RIL population (ND13×ND601) with a total length of 
4478.98 cM, which is the first high-quality and high-density SNP genetic 
map based on resequencing (Gu et al., 2020). However, the intra-specific 
map of sea island cotton lags far behind that of upland cotton. In 2018, 
Fan et al. constructed the first high-density intra-specific genetic map of 
sea island cotton using genotyping-by-sequencing (GBS) sequencing 
technology. The map was constructed using a RIL population derived 
from the cross between sea island cotton 5917 and Pima S-7, and it 
contained 3557 SNP markers, a total length of 3076.23 cM, and an 
average distance of 1.09 cM (Fan et al., 2018). 

The transition from traditional "empirical breeding" to efficient 
"precision breeding" can effectively improve the efficiency and pre
dictability of breeders (Hickey et al., 2019). With the rapid development 
of disciplines such as genetics, bioinformatics, and molecular biology, 

the theory and technology of plant breeding have undergone significant 
changes (Song et al., 2023). The deep integration of molecular breeding 
information and molecular biology technology has to some extent 
broken through the barriers and limitations of current crop breeding 
(Chen et al., 2022). Currently, multiple functional databases integrating 
phenotypes and genomics have been established for cotton, such as the 
CottonMD database, CottonFGD database, and Cottongene database 
(Yang et al., 2023; Yu et al., 2014; Zhu et al., 2017), providing excellent 
gene resources and theoretical guidance for molecular breeding of cot
ton. However, they are still in the stage of basic research, and their 
contribution to molecular design breeding is relatively low (Wei et al., 
2019). In particular, the accumulation of data on sea island cotton is 
limited, and research on the genetic localization and transcriptional 
regulation mechanisms of important traits is not in-depth. Faced with a 
shrinking planting area (FAO, https://www.fao.org/), sea island cotton 
is being rekindled by researchers. In the past three years, studies on 
natural populations of sea island cotton have been reported successively, 
and through genome-wide association study (GWAS) analysis, regula
tory loci related to stress tolerance, disease resistance, and cotton fiber 
development have been identified (Jin et al., 2023; Su et al., 2020; Wang 
et al., 2022c; Yu et al., 2021; Zhao et al., 2022). These studies have 
actively promoted the genetic improvement of sea island cotton. 

In this study, we used a newly bred Chinese elite parent of Xinhai 
cotton (Xinhai 21) as the female parent and an early variety of Pima 
cotton bred in the United States (06E2062) to construct a selfing pop
ulation (105 families). Based on data from 12 different phenotypic traits 
in five environments, we explored the genetic characteristics of 
phenotypic traits. With the help of resequencing technology, we con
structed a high-density genetic map, mapped the quantitative trait loci 
(QTL) of eight important traits of sea island cotton, and deciphered the 
genetic basis of the target traits. Finally, using transcriptome data of 
parental cotton fibers at different stages and published public databases 
as validation sets, we screened candidate genes within stable QTLs. Our 
research results provide theoretical support for unraveling the genetic 
basis of excellent traits in sea island cotton and have the potential to 
create breakthrough cotton new varieties using cotton biotechnology 
breeding techniques. 

2. Materials and methods 

2.1. Construction of RIL population and phenotypic investigation 

The experimental materials for this study were selected as the Chi
nese sea island cotton variety, Xinhai 21, which has the largest cumu
lative planting area, as the female parent, and the high-yielding and 
high-lint Pima cotton variety, 06E2062, from the United States, as the 
male parent. In 2012, F1 seeds were produced by crossing the male and 
female parents in Alar City, Xinjiang. In the same year, the F1 generation 
was further propagated in Sanya, Hainan. From 2013–2019, F2 indi
vidual plants were grown in Alar City, Xinjiang, and self-pollinated and 
single-seed descent was practiced until the seventh generation, resulting 
in a segregating population of 105 recombinant inbred lines. The parents 
and RIL population were planted in a three-point two-replicate trial 
from 2019 to 2021 in Alar City, Xinjiang (Table S1). The phenotypic 
evaluation of the population was conducted using a completely ran
domized block design, with one film and three rows of artificial sowing. 
The row length was 2 m, and the spacing between rows was 0.5 m. Field 
management was carried out according to local production practices. 

Phenotypic data for plant height (PH), first fruit spur branch number 
(FFSBN), first fruit spur height (FFSH), effective boll number (EBN), and 
fruit spur branch number (FSBN) were collected during the flowering 
stage for the RIL population and parental lines in each survey year. In 
addition, 50 normal cotton bolls from the middle fruit spur of each 
sample were selected, weighed, and ginned to determine lint percentage 
(LP) and single boll weight (SBW) data. For fiber quality evaluation, 20 g 
of seed cotton from each sample was sent to the Cotton Quality 
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Inspection and Testing Center of Xinjiang Academy of Agricultural Sci
ences. Fiber quality parameters including fiber length (FL), fiber 
strength (FS), micronaire value (FM), fiber uniformity (FU), and fiber 
elongation (FE) were measured using the Uster HVI1000 fiber testing 
instrument under controlled conditions of constant temperature (20 
±1℃) and relative humidity (65±1%). Meteorological data for the 
study site were obtained from the National Meteorological Information 
Center of China (http://data.cma.cn/). 

2.2. Phenotypic data analysis 

Descriptive statistics and correlation analysis of the phenotypic data 
for the parental lines and RIL population were performed using IBM 
SPSS Statistics 27.0 (SPSS, Chicago, IL). The lme4 package (Bates et al., 
2014) in R 4.2.1 was used to calculate the best linear unbiased estima
tion (BLUE) values for each RIL in five environments, and the Perfor
mance Analytics package (Peterson et al., 2014) was employed to 
analyze the correlation of 12 traits. Variance and heritability analysis 
were conducted using QTL IciMapping 4.2, utilizing the following 
equation: H2

b = σ2
G/ (σ2

G + σ2
G×E/ne + σ2

E/nenr), where ne and nr represent 
the number of environments and replicates, respectively. To present the 
data analysis results in a clear manner, the ggplot2 package (Wickham, 
2009) in R 4.2.1 was used for graphical visualization, including t-test 
boxplots for parental phenotypic traits, a correlation heatmap for pop
ulation phenotypic traits, as well as normal distribution plots and box
plots for population phenotypic traits. 

2.3. Analysis of quantitative trait main genes and multiple gene mixed 
inheritance 

To identify the main genes and multiple gene mixed inheritance 
models for quantitative traits in a segregating population, and to provide 
reference information for the genetic basis of quantitative traits and crop 
breeding, the SEA v2.0 software in R 4.2.1 was used (Wang et al., 
2022a). The interactive program SEA-G4F3 was employed to analyze 
different phenotype data. In this analysis, models with the minimum or 
smaller Akaike’s information criterion (AIC) values were selected as 
candidate models. Then, fitness tests, including Homogeneity (U1

2, U2
2, 

U3
2) test, Smirnov (nW2) test, and Kolmogorov (Dn) test, were conducted. 

Models that did not reach a significant level in the fitness tests were 
selected from the candidate models. By comparing the genetic param
eters of each model, the best genetic model was determined. Genetic 
parameter analysis was then performed on the best model. 

2.4. DNA extraction and sequencing 

Field-collected parental and RIL population leaf tissue samples were 
collected and immediately frozen in liquid nitrogen before being stored 
at − 80◦C. Genomic DNA was extracted using an improved cetyl
trimethylammonium bromide (CTAB) method. The concentration of 
DNA samples was determined using a NanoDrop™ One microvolume 
UV-Vis spectrophotometer by Thermo Fisher Scientific. The integrity 
and purity of DNA samples were assessed by 1% agarose gel electro
phoresis. Genomic DNA was then fragmented by ultrasonication and 
size-selected using magnetic beads to construct the genomic rese
quencing libraries. The libraries were subjected to PE150 sequencing on 
the DNBseq platform by BGI Genomics (Rao et al., 2020). The raw data 
obtained were processed to obtain high-quality clean data by splitting, 
removing contaminants, and trimming low-quality sequences. 

2.5. SNP detection 

Used the BWA software (Li and Durbin, 2009) to align the clean data 
to the reference genome of G. barbadense 3–79 (Wang et al., 2019) with 
the parameters "mem -t 14 -k 32 -M -R". Converted the SAM file to BAM 
format using Samtools. Sorted, marked duplicates, filter, and indexed 

the BAM file using Picard-tools (https://broadinstitute.github.io/pi 
card/). Used the GATK software (McKenna et al., 2010) to calculate 
alignment rate, coverage, and depth based on the filtered BWA align
ment results. Selected uniquely mapped reads and perform population 
SNP detection using the HaplotypeCaller program from the GATK soft
ware package (QD < 2.0 || MQ < 40.0 || FS > 60.0 || MQRankSum <
− 12.5 || ReadPosRankSum < − 8.0). Additionally, to improve variant 
detection accuracy, performed quality recalibration and data output 
using the BaseRecalibrator and PrintReads tools, followed by variant 
detection using the HaplotypeCaller program again to generate the final 
usable VCF data. 

2.6. SNP filtering 

To eliminate false-positive variants caused by misalignment, we only 
retained high-quality SNPs (parental coverage depth ≥ 15, RIL coverage 
depth ≥ 5). Based on parental polymorphism, SNPs were classified into 4 
types of allelic segregation (hk×hk, aa×bb, nn×np, and lm×ll). To 
ensure the accuracy of subsequent experiments, we selected SNP 
markers that exhibited polymorphism between parents and were ho
mozygous, specifically the aa×bb type. We further filtered the high- 
quality SNPs using the following criteria: (1) removing sites with a 
missing rate greater than 15% in the RIL population; (2) filtering out 
sites with a chi-square test P-value less than 0.001 for skewed segrega
tion. These retained sites were used for subsequent analysis. 

2.7. Construction and quality assessment of genetic map 

The SNP markers that conform to the aa×bb segregation pattern in 
the RIL population were processed using the "sliding window" method, 
as described by HUANG et al. (Huang et al., 2009), with a perl script. In 
this method, a set of SNPs is treated as a single marker unit, and a sliding 
window approach is used. A window size of 15 SNPs, with a step size of 1 
SNP, was employed to detect recombination breakpoints in the RIL 
population and generate a recombination breakpoint map. Additionally, 
bin markers with positions less than 500 bp or containing fewer than 4 
SNPs were filtered out. The genotypes of the offspring were classified as 
"A," "B," or "H" based on the geneotyping results of the RIL population. 
The output file obtained from this process was imported into JoinMap 
4.1 for genetic map construction using regression analysis and the 
Kosambi function (Stam, 1993). Markers that exhibited severe 
non-linkage were removed, and the genetic distance between adjacent 
markers was calculated. Finally, a linkage genetic map was generated. 

Performing co-linearity analysis between the markers’ physical po
sitions and genetic positions shown in the diagram, the ALLMAPS pro
gram was used to calculate the spearman correlation coefficient for each 
linkage group with the physical map (Tang et al., 2015). This analysis 
aimed to validate the construction of the genetic map. The ratio of ge
netic distance to physical distance between adjacent markers in the di
agram was used to determine the recombination rate. Regions with a 
recombination rate greater than 20 cM/Mb were considered as recom
bination hotspots. 

2.8. QTL localization of important traits in Sea Island cotton 

QTL mapping was performed using the QTL IciMapping 4.2 software 
with the following parameters: step size of 1 cM, PIN of 0.001, permu
tation times of 1000, and LOD threshold of 2.5 (Meng et al., 2015). In
clusive Composite Interval Mapping ADDitive (ICIM-ADD) method was 
used to map QTLs for eight traits including PH, LP, FL, and FS. Over
lapping confidence intervals for the same trait in different environments 
were considered as the same QTL. QTLs detected in two or more envi
ronments were defined as stable QTLs. QTLs identified in this study but 
not overlapping with previously reported QTLs were considered as 
novel. The 99% confidence interval for QTLs was used as the mapping 
interval. Physical confidence intervals were determined based on the 
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markers within the genetic confidence interval, using the reference 
G. barbadense 3–79 genome. QTLs were named following the convention 
of "q+trait+chromosome+QTL number" established by previous studies 
(McCouch, 1997). If the confidence intervals of two or more QTLs for 
different traits overlapped or if the highest peak of the QTLs was within 
10 cM, they were considered as a QTL cluster (Zhang et al., 2020). 
MapChart software was used to visually present the QTL mapping results 
(Voorrips, 2002). 

2.9. Annotation and identification of candidate genes 

Stable QTLs detected under different environmental conditions, 
which show minimal environmental influence, are more likely to be 
candidate genes or markers for trait improvement and prediction. We 
selected the 99% confidence interval of stable QTLs as the candidate 
region and extracted the physical interval and gene information within 
this QTL from the CottonFGD website (Zhu et al., 2017). ANNOVAR 
software package (Wang et al., 2010a) was used to annotate the genetic 
variations of the population SNP and Indel data based on the 
G. barbadense 3–79 genome, and the annotation results were analyzed 
and summarized. The candidate genes were functionally annotated and 
enriched using the eggNOG-mapper online tool for Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), and euKaryotic 
Orthologous Groups (KOG) analyses (Cantalapiedra et al., 2021). The 
selected candidate genes and their corresponding protein sequences 
were compared to the A. thaliana using the BLASTP software for func
tional prediction, utilizing the Gene search program in the CottonMD 
website (Yang et al., 2023). 

2.10. Transcriptome analysis of cotton fibers at different developmental 
stages 

For this study, the RIL population derived from the parents (Xinhai 
21 and 06E2062) was used. Embryo sacs at 0 DPA (day post anthesis) 
and fibers at 5 DPA, 10 DPA, 15 DPA, 20 DPA, 25 DPA, 30 DPA, and 35 
DPA were collected and immediately frozen in liquid nitrogen. The 
samples were then stored at − 80◦C for subsequent analysis. Total RNA 
extraction from the different cotton fiber samples was performed using 
the RNAprep Pure Polyphenol Plant Total RNA Extraction Kit (Tiangen 
Biotech). The protocol provided by the manufacturer was followed to 
extract total RNA from the samples at different developmental stages. 
The extracted RNA was then used for mRNA enrichment using magnetic 
beads with Oligo (dT) and cDNA library construction with insert frag
ments of 150–200 bp. The DNBSEQ sequencing platform was used for 
paired-end sequencing. The G. barbadense 3–79 reference genome was 
used for sequence alignment using HISAT2 (Kim et al., 2019). The 
aligned reads were then processed using the featureCounts command 
from the Subread package (Liao et al., 2013) to calculate the expression 
levels. The expression values used in this study were represented as 
TMM (trimmed mean of M-values) values. Differentially expressed genes 
(DEGs) were identified using the DEGseq package (Wang et al., 2010b), 
with a threshold set at |log2 (FoldChange)| > 1 and a P-value < 0.01. The 
WGCNA package (Langfelder and Horvath, 2008) in R 4.2.1 was used to 
construct a weighted gene co-expression network. The "blockwise 
Modules" function with default settings was used to obtain gene 
expression modules. The LinkET package (https://github.com/Hy 
4m/linkET) was employed to perform Mantel tests and calculate the 
correlation coefficients between the module eigengenes (MEs) and 
different fiber traits. Specific expression modules were selected and 
subjected to GO enrichment analysis and KEGG pathway analysis using 
the cluster Profiler package (Yu et al., 2012) in R 4.2.1. 

2.11. Validation by qRT-PCR 

To validate the accuracy of the RNA-seq data, ten differentially 
expressed genes were randomly selected for qRT-PCR analysis. Primer 

design was conducted using Primer Premier 5 software (Lalitha, 2000) 
(Table S2). Total RNA extraction was performed as described in the 
previous section, and single-stranded cDNA was synthesized using the 
First strand cDNA Synthesis kit (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. The cotton GbUBQ7 gene was chosen as 
the reference gene. Biological triplicates were set up, and data analysis 
was conducted using the 2- ΔΔCt method (Hu et al., 2019). 

2.12. Analysis of genotypic and phenotypic data in natural populations 

In the initial phase of this study, a wide range of sea island cotton 
materials from different countries and regions were collected by our 
research group. Additionally, publicly available genotype data materials 
were obtained from the NCBI SRA database (Ma et al., 2021; Wang et al., 
2022c; Yu et al., 2021; Zhao et al., 2022). From these sources, a total of 
287 sea island cotton resources (Table S3, with an average sequencing 
depth of ≥ 10x) were selected to construct a natural population of sea 
island cotton. Among the 287 resources, 63 were approved varieties 
from Xinjiang, 54 were collected from the northwest region of China, 32 
were collected from coastal areas of China, 92 were obtained from 
Central Asian countries, 26 were from the United States or South 
America, and 20 were from Egypt. In 2021, these materials were planted 
in the same environmental conditions as the RIL population in Korla and 
Awati, Xinjiang. The planting methods, collection of phenotypic data, 
SNP filtering, and descriptive statistics were performed following the 
same procedures as the RIL population. 

3. Results 

3.1. Phenotypic analysis of RIL population parents 

Selection of parents with significantly different phenotypes in the 
parental segregation population can maximize the utilization of their 
genetic diversity. The cultivated variety Xinhai 21, developed in China, 
is a zero-fruiting spur type, while the Pima variety 06E2062, originated 
from the United States, is a type II-fruiting spur (Fig. 1A). Both have 
been widely used as breeding parents in their respective countries of 
origin and have made significant contributions. The average PH of 
Xinhai 21 is 62.57 cm, while that of 06E2062 is 55.34 cm, and the dif
ference between them is not significant (Fig. 1B). Other traits, such as 
EBN, FU, and FE, show no significant differences between the parents 
(Fig. 1E, L, M). However, significant differences are observed between 
the parents in terms of FSBN, SBW, FS, and FM (Fig. 1F, G, J, K). FFSBN, 
FFSH, LP, and FL also show extremely significant differences between 
the parents (Fig. 1C, D, H, I). It is worth noting that FFSH and LP are 
bottlenecks for the sustainable development of sea island cotton pro
duction in China and are traits that urgently need improvement. The 
FFSH of 06E2062 is 17.08 cm, with a LP of 40.28%, while Xinhai 21 has 
a FFSH of 5.79 cm and a LP of 33.71%. The FFSH of 06E2062 exceeds 
that of Xinhai 21 by 11.29 cm, and its LP is 6.57% higher in comparison. 
However, the FL of 06E2062 is 31.18 mm, which is 19.00% shorter than 
that of Xinhai 21 (36.98 mm). In summary, Xinhai 21 and 06E2062 
parents have different origins and do not belong to the same ecological 
cotton region. They exhibit significant differences in agronomic, yield, 
and quality traits, providing a basis for generating more genetic vari
ability in their progeny. 

3.2. Phenotypic analysis of the RIL population 

Phenotypic analysis of the RIL population was conducted in five 
different environments, resulting in the collection of data for 12 distinct 
phenotypic traits. The BLUE values for the means were calculated using 
the lme4 statistical package. A summary of descriptive statistics, 
including minimum and maximum values, means, variances, co
efficients of variation, skewness, and kurtosis for the 12 traits, was 
provided (Table S4). The range of variation between minimum and 
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maximum values across different environments was 8.93–10.44 mm for 
FL, 10.06–11.78% for LP, and 8.60–15.9 cm for FFSH. The coefficients 
of variation for the different traits ranged 1.36%-48.72%, with FU 
having the lowest variation and FFSH having the highest variation. The 
absolute values of skewness for the different traits across environments 
were all less than 1, with most fiber quality traits exhibiting negative 
skewness and most agronomic traits and yield traits showing positive 

skewness, except for SBW. In terms of kurtosis analysis, the absolute 
values for most traits across environments were less than 1, except for 6 
traits (FE, EBN, FFSH, and FFSBN), which had absolute kurtosis values 
greater than 1. A value of kurtosis greater than 1 indicates that the 
phenotypic data for that trait are more concentrated and there are a few 
individuals exhibiting extremely extreme phenotypes, showing signifi
cant positive or negative transgressive segregation. Furthermore, the 

Fig. 1. Phenotypic characterization and comparative analysis of 12 traits between Xinhai 21 and 06E2062 lines. (A) The field-level phenotypic traits exhibited by 
G. barbadense Xinhai 21 and 06E2062. The scale bars in the panels are 1 cm, respectively. (B-M) A boxplot was utilized to illustrate intergroup comparisons between 
the lines Xinhai 21 and 06E2062 across 12 traits. *, **, *** indicates significant levels at P < 0.05, 0.01, 0.001, respectively, determined by Student’s t test. 

Fig. 2. Normal distribution and boxplot of 12 traits in RIL populations across different environments. (A-L) Normal distributions of different traits in the RIL 
population across five environments. (M-X) Boxplots of different traits in the RIL population across five environments. 
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Kolmogorov-Smirnov test was performed to examine whether the 
different traits across environments followed a normal distribution, and 
frequency histograms were used to clearly illustrate the normal distri
bution curves (Fig. 2 A-L). The results showed that FFSH and FFSBN 
exhibited bimodal distributions, while FE did not follow a normal dis
tribution. The remaining traits all followed or closely approximated a 
normal distribution, which is consistent with the descriptive statistical 
results. In conclusion, the RIL population exhibits significant genetic 
diversity and wide phenotypic variation, and except for FE, all other 
traits are suitable for genetic analysis. 

3.3. Correlation analysis of the RIL population phenotypes 

To explore the reliability of the data, we analyzed the correlation of 
the same phenotypic traits in different environments. The results 
showed that most of the same traits exhibited strong positive correla
tions (correlation coefficient > 0.5 and extremely significant) in 
different environments. However, the correlation coefficient of FE be
tween different environments was consistently lower than 0.5, which 
was significantly different from other traits (Table S5, Fig. 3A). In the 
correlation analysis of different traits in the same environment, there 
were no significant strong correlations between fiber traits and agro
nomic traits, as well as fiber traits and yield traits. However, there were 
extremely significant positive correlations between FFSBN and FFSH, 
EBN and FSBN, and FL and FS in different environments (Table S6). 

Furthermore, correlation analysis using the BLUE values revealed that 
there were 30 combinations with significant or extremely significant 
correlations, including 11 combinations with strong correlations, 10 
with moderate correlations, and 9 with weak correlations (Fig. 3B). In 
addition, among the fiber quality traits, the FM showed extremely sig
nificant negative correlations with other fiber quality traits (except FE). 
These results indicate that there is weak correlation between different 
types of traits in the RIL population, while there is strong correlation 
between traits of the same type. The phenotypic traits of different types 
interact, constrain, and influence each other. 

The phenotype of cotton is the result of the interaction between 
genotype and environment. Due to chemical regulation factors, the ALE- 
2020 environment exhibited significantly PH compared to other envi
ronments, but significantly higher EBN (Fig. 2M). In the ALE-2019 and 
KEL-2021 environments, there were lower boll numbers, as indicated by 
meteorological data (Fig. 3C, D). The high temperature during bolling 
period in the ALE-2019 environment and the low temperature during 
seedling stage in the KEL-2021 environment were unfavorable for cotton 
yield formation. The former resulted in a higher shedding rate, while the 
latter hindered the growth and development of cotton seedlings 
(Fig. 2M-Q). In different years at the same experimental site, we found 
that the average FL decreased year by year (Fig. 2T). In different 
experimental sites in the same year, the ALE environment was more 
conducive to the formation of SBW and FL, but not to the improvement 
of LP (Fig. 2S, T). In addition, the KEL environment had significantly 

Fig. 3. Analysis of correlations and environmental factors within the RIL population during the cotton growth season. (A, B) Heatmap of the correlation between 
different environments across identical traits; Frequency distribution and correlation coefficients of phenotypic variations of 12 traits. Traits on the diagonal 
correspond to names on the horizontal and vertical coordinates. *, **, *** indicates significant levels at P < 0.05, 0.01, 0.001, respectively. (C) Heatmaps of average 
rainfall in the cotton growth season in the 5 environments in 2019–2021. (D) Heatmaps of average temperature in the cotton growth season in the 5 environments 
in 2019–2021. 
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lower PH, EBN, and FSBN compared to other environments, but there 
was no significant difference in fiber quality traits and LP compared to 
other environments (Fig. 2M-X).These results indicate that extreme 
temperatures significantly affect agronomic and yield traits, but have a 
smaller impact on fiber quality traits, suggesting that the former is more 
influenced by environmental effects, while the latter is more controlled 
by genotype and has a higher heritability. 

3.4. Analysis of heritability and genetic models in RIL population 

In the analysis of variance model, genotype effect, environment ef
fect, genotype-environment interaction effect, replication-environment 
interaction, and error effect were all included in the genetic model. 
The F-test indicates that the genetic model was suitable for analyzing 12 
phenotypic traits (Table S7). Further analysis of the genetic model re
veals that there were significant differences among genotypes for traits 
such as FFSH, SBW, LP, FL, FM, and FU. The environment effect, ge
notype effect, and genotype-environment interaction effect were also 
significant. However, based on the estimation of variances, the genetic 
variance was much higher than the random error variance, environ
mental variance, and interaction variance, indicating that the pheno
typic data were suitable for further genetic analysis. On the other hand, 
PH, FFSBN, EBN, FSBN, and FS, although reached a significant level for 
genotype, had genetic variance estimates lower than environmental 
variance or interaction variance. This suggested that these traits were 
more influenced by the environment and required more environmental 
data for genetic analysis. FE was not suitable for genetic analysis, which 
was confirmed by the estimation of broad-sense heritability. Except for 
FE, the broad-sense heritability ranged from 72.05% to 95.36% for 
different traits, with EBN having the lowest broad-sense heritability and 
LP having the highest. 

The previous analysis results indicated that the FFSBN did not follow 
a normal distribution, the FSBN was highly correlated with the EBN, the 
FU had low variability, and the FE had low heritability. Therefore, we 
excluded these four phenotypic traits from the subsequent genetic 
analysis. In the analysis of the major gene + polygene mixed genetic 
model; we retained the three genetic models with the smallest AIC 
values for each trait in different environments. A total of 14 genetic 
models were obtained for the eight phenotypic traits in different envi
ronments, and we performed goodness-of-fit tests including U1

2, U2
2, U3

2, 
nW2 and Dn (Table S8). It was found that the most suitable genetic model 
for the same trait differs in different environments. In order to more 
accurately infer the genetic models corresponding to the phenotypic 
traits, we not only considered the AIC values but also calculated the 
frequencies of different models appearing in different environments. 
Therefore, it was predicted that PH, LP, FS, and FM conformed to the 1 
major gene + polygene additive-dominance-epistasis (MX1-AD-ADI) 
genetic model; the FFSH conformed to the 2 major gene additive- 
dominance-epistasis (2MG-ADI) genetic model; and FL, EBN, and SBW 
conformed to the polygene additive-dominance-epistasis (PG-ADI) ge
netic model. By adjusting the QTL mapping statistical model based on 
the genetic models provided, the influence of confounding effects can be 
eliminated or reduced, leading to more accurate detection signals. 

3.5. Statistical analysis and SNP filtering of resequencing data 

Resequencing of RIL population and parents was performed using the 
DNBSEQ sequencing platform from BGI Genomics. Approximately 1.22 
Tb of high-quality data was generated, with a Q20 ≥ 96.71% and Q30 ≥
94.71% (Table S9). The GC content was within the normal range. The 
maternal parent, ’Xinhai 21’, and the paternal parent, ’06E2062’, yiel
ded 83.2 Gb (sequencing depth of 48.48×) and 72.3 Gb (sequencing 
depth of 40.45×) of clean data, respectively. After aligning the parents 
to the reference genome, the coverage at 4.0× was determined to be 
96.7% for the maternal parent and 97.1% for the paternal parent. The 
RIL population obtained an average of 10.1 Gb of clean data, with an 

average sequencing depth of 5.95×. The 1.0× coverage was ≥ 98.56%, 
and the average coverage at 4× was 75.7%. The high-depth sequencing 
of the parents provided more comprehensive and accurate variant data, 
which serves as the fundamental support for the reliability of the 
research results. After SNP calling, a VCF file was generated for each 
parent, resulting in a total of 1925,537 polymorphic SNP markers. 
Among these, the aa×bb genotype accounted for 48.31%, equivalent to 
930,171 SNPs (Table S10). Subsequently, the filtered SNPs from the 
parents were extracted from the RIL population VCF file. Further 
filtering was performed within the population VCF data, resulting in a 
final set of 901,893 SNPs that were pure and polymorphic in the parents 
and exhibited no abnormal genotypes in the RIL population. These SNPs 
will be used for subsequent analysis. SNP density analysis revealed an 
average density of 0.45/kb and 0.38/kb for the A and D subgenomes, 
respectively. Although there were still gaps of varying sizes on chro
mosomes D10 and D11, the overall SNP quantity provided uniform 
coverage across the entire genome (Fig. 4A), making them suitable for 
further analysis. 

3.6. Construction of genetic map 

Bin markers, also known as segment markers, represent a segment of 
the genome rather than a single nucleotide change, effectively reducing 
the impact of single point variations. Firstly, the filtered SNP loci were 
used to analyze population structure and construct an evolutionary tree 
for the RIL population. Secondly, the heterozygosity rate of each family 
was calculated and filtered, revealing no abnormal branches or families 
with high heterozygosity rates (Fig. 4B). Then, a perl script was used to 
analyze the recombination breakpoints of the families using a sliding 
window approach, detecting a total of 72,545 recombination break
points (Fig. 4C). The offspring ranged from a minimum of 52 break
points to a maximum of 340 breakpoints, with an average of 98 
breakpoints per offspring. Ultimately, 7789 bin markers were obtained 
for subsequent genetic map construction. The bin markers were input 
into the Joinmap 4.1 software to construct the genetic map, resulting in 
5295 bin markers being mapped into 26 linkage groups (Table S11). The 
total genetic map distance was 2721.79 cM, with an average genetic 
map distance of 0.55 cM and a maximum gap of 15.11 cM. The per
centage of gaps smaller than 5 cM averaged 99.33% (Table S11). The 
longest linkage group was on chromosome D08, with a genetic distance 
of 139.79 cM and containing 187 markers. The shortest linkage group 
was on chromosome D13, with a genetic distance of 77.10 cM and 
containing 145 bin markers. Chromosomes A06 and A11 had the most 
bin markers (349), while chromosome A04 had the fewest (116). The 
average recombination rate of the genetic map was 1.5, with each 
linkage group having 0–6 recombination hotspots, totaling 55 hotspots. 
Among them, five chromosomes had no recombination hotspots. 

3.7. Quality assessment of the genetic map 

Quality assessment of the genetic map (Fig. 4D) was conducted 
through analysis of monomer origin, collinearity comparison, and 
linkage analysis between adjacent markers. It was found that the ma
jority of chromosome segments in the RIL population showed consistent 
origins. Most bin markers in each linkage group were ordered in 
accordance with the physical map order, and the strength of the linkage 
relationship weakened with increasing marker distance. Although there 
may be chromosome translocations in chromosomes A05, A06, A09, 
A11, and D03 compared to the reference genome, resulting in poorer 
collinearity, the correlation coefficient of chromosome A11 was the 
lowest, at only 0.214. However, 19 linkage groups had Spearman cor
relation coefficients greater than 0.5, and 15 linkage groups had corre
lation coefficients greater than 0.9. Among them, chromosome D10 had 
the highest correlation coefficient, at 1. Overall, these findings indicate 
that the constructed genetic linkage map exhibits good collinearity and 
high accuracy in calculating genetic recombination rates, making it 
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Fig. 4. High-density genetic map construction and collinearity analysis between the genetic map and the physical map graph of the RIL population. (A) Heatmap of 
SNP density in the RIL population. (B) Phylogenetic neighbor-joining tree and structure of the RIL population. (C) Recombination bin map generated from the RIL 
population. (D) Comparison of the genetic map and the G. barbadense 3–79 genome sequence. 

Fig. 5. Mapping of quantitative trait loci (QTL) for eight different traits on the physical map. Note: Length of segments represented physical intervals of corre
sponding QTLs. Different environments are represented by different colors. 
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suitable for subsequent mapping analyses. 

3.8. Identification and analysis of important trait Loci in Sea Island 
Cotton 

In order to identify the genetic loci related to cotton agronomic 
traits, yield, and fiber quality traits, a QTL mapping analysis was con
ducted using the ICIM (Interval Mapping) method in the QTL IciMap
ping software for eight phenotypic traits from 2019 to 2021 across five 
environments and one BLUE value (Table S12, Fig. 5). A total of 169 
QTLs were detected, with a phenotypic variation explained ranging from 
3.25% to 69.83% and LOD values ranging from 2.5 to 31.47. Among 
them, 78 QTLs were associated with fiber quality traits (34 QTLs for FL, 
16 QTLs for FM, and 28 QTLs for FS), 61 QTLs were associated with yield 
or yield-related traits (12 QTLs for EBN, 23 QTLs for LP, and 26 QTLs for 
SBW), and 30 QTLs were associated with agronomic traits (14 QTLs for 
FFSH and 16 QTLs for PH). Except for chromosome D05, QTLs were 
distributed on the other 25 chromosomes, with chromosome D07 having 
the highest number of QTLs. Analysis of the QTL distribution on chro
mosomes revealed that the QTLs for fiber quality and yield-related traits 
were not randomly distributed in the At and Dt subgenomes. Among the 
QTLs associated with fiber quality, 49 were located in the At subgenome, 
while 29 were distributed in the Dt subgenome. In the identified QTLs, 
the additive effects ranged from − 2.95–5.16, and both positive and 
negative additive effects were detected for the same trait. For example, 
the additive effects of qLP_A08_1, qLP_D04_1, qLP_D09_1, and qLP_D09_2 
were negative, indicating that the alleles contributing to higher LP were 
derived from the high-lint parent 06E2062. Although the LP of the fe
male parent Xinhai 21 was lower than that of the male parent 06E2062, 
it still carried alleles for higher LP at the loci qLP_A02_1, qLP_A08_2, 
qLP_A13_1, and qLP_D06_1. The alleles for positive lint percentage QTLs 
were dispersed in the parents, and the QTL mapping results provided a 
reasonable explanation for the phenomenon of transgressive segregation 
in LP. Based on the phenotypic traits of the parents and the positive or 
negative values of the additive effects, it was found that 63 QTLs had 
alleles for increased effects derived from ’Xinhai 21’, while 106 QTLs 
had alleles for increased effects derived from ’06E2062’ (Table S12). 
Additionally, 15 QTLs associated with fiber quality, 13 QTLs associated 
with yield, and 3 QTLs associated with agronomic traits were detected in 
at least two or more environments. Among them, qFL-A04–3, qFS- 
A01–1, and qFS-A06–1 were detected in four environments, qFL_D04_1 
and qEBN_D07_1 were detected in five environments, and qLP-D09–1, 
qSBW-D01–2, and qFFSH_D07_1 were detected in all environments, 
indicating their stability. In the QTL mapping statistics table, each QTL 
was assigned a unique identifier, which also provided detailed infor
mation about the QTL location, including trait, environment, marker 
name, genetic position, LOD value, phenotypic variation explained 
(PVE), physical position, and the number of genes within the interval 
(Table S12). For example, qLP-D09–1 was located at 51 cM on chro
mosome D09, with the left bin marker Gbar_D09_418 and the right bin 
marker Gbar_D09_421. It explained a PVE ranging from 11.47% to 
22.50% and had LOD values ranging 4.91–11.63. The additive effects 
were − 1.03 to − 0.71, and the physical position was 41.85–42.11 Mb, 
with a fragment size of 0.26 Mb and a total of nine genes within the 
interval. 

3.9. Identification of QTL clusters 

The existence of QTL clusters implies the presence of multiple QTLs 
that are densely distributed on the chromosomes, and these loci may 
play a synergistic regulatory role in complex phenotypes. In the iden
tification of QTL clusters, intervals with single QTLs larger than 20 Mb 
are not analyzed. A total of 17 QTL clusters were identified (Table S13), 
with 9 clusters in the At subgenome and 8 clusters in the Dt subgenome. 
Among them, there are 2 QTL clusters on chromosomes A06, D01, and 
D13, respectively. At least one stable QTL was identified in 11 QTL 

clusters, indicating that these regions may contain candidate genes 
related to important economic traits in cotton. Among the stable QTL 
clusters, qClu-D07–1 cluster contains the most QTLs (4), while qClu- 
A01–1, qClu-A06–2, qClu-A10–2, and qClu-D04–1 only contain QTLs 
related to fiber quality. qClu-D01–2, qClu-D08–1, qClu-D12–1, and qClu- 
D13–2 are QTL clusters with mixed traits. When the additive effects 
within QTL clusters have the same direction, there may not be a problem 
of linkage drag, indicating the potential for marker-assisted selection 
breeding. Unfortunately, LP always has a different additive effect di
rection compared to other traits, and we did not identify potential QTL 
clusters related to LP. However, it is noteworthy that the results of QTL 
clusters largely explain the correlation between different phenotypic 
traits in the RIL population, which is crucial for understanding the ge
netic mechanisms and relationships between complex traits. It may 
serve as the basis for the genetic linkage between different traits. 

3.10. Annotation of variation in RIL population 

The variants in the RIL population, which are both homozygous and 
polymorphic, were annotated using the ANNOVAR software package. 
The results revealed a significant number of genomic structural varia
tions occurring in intergenic regions, followed by upstream and down
stream regions of genes. Specifically, the 5′ UTR and 3′ UTR regions were 
annotated 6616 and 4646 times, respectively (Table S14). Splicing re
gions were annotated 137 times, with 7 occurrences in exon splicing 
regions, 42,115 occurrences in intron regions, and 14,412 occurrences 
in exon regions. Further analysis of exon variants identified 490 
frameshift insertion/deletion sites, 322 non-frameshift insertion/dele
tion sites, 270 stop codon loss/mutations, 4793 synonymous mutations, 
and 8518 non-synonymous mutations, involving a total of 6693 genes 
(Table S14). 

3.11. Identification and analysis of candidate genes in stable QTL for 
agronomic traits 

Based on the mapping results of agronomic traits, we selected two 
stable QTLs associated with PH and two stable QTLs associated with 
FFSH. By aligning the markers at both ends of the QTL intervals with the 
physical genome, we identified 81 genes within these intervals. After 
screening, we identified 16 genes carrying polymorphic variants 
(Table S15). For FFSH, we detected a QTL with a phenotypic variance 
ranging from 31.34% to 69.83%. Among the genes within this QTL, only 
one, Gbar_D07G011870, encoding the TFL1 protein, contained a poly
morphic variant. This suggests that this gene may be the major func
tional gene regulating first fruit spur height in cotton. Gene functional 
annotation and description play a crucial role in providing valuable 
insights into gene function and related pathways, which helps us infer 
candidate genes related to the target traits. For plant height QTL map
ping, we focused on genes related to cell wall formation and intracellular 
nutrient transport. Therefore, the candidate genes we selected include 
Gbar_D08G025710 (NAC070), which has been proven to regulate cell 
wall maturation in Arabidopsis root hair growth (Bennett et al., 2010), 
Gbar_D08G025730 (DRP2B), a member of the dynamin protein family 
involved in organelle formation and transport, and Gbar_D10G021350 
(GnTL), which participates in cellulose synthesis in Arabidopsis. 

3.12. Identification and analysis of candidate genes in stable QTLs for 
yield-related traits 

Based on the mapping results of yield-related traits, we selected 1 
stable QTL associated with EBN, 5 stable QTLs associated with SBW, and 
3 stable QTLs associated with LP. After comparing with the physical 
map, we identified 802 genes within the selected QTL regions, among 
which 99 genes carried polymorphic variation sites (Table S16). The 
QTL associated with EBN is a pleiotropic QTL that shares genetic basis 
with FFSH, and we have conducted further analysis on this. In the 
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mapping of SBW, there were no annotated polymorphic sites in the 
genes within the qSBW_A06_1 interval, while 67 genes in the other QTL 
intervals were annotated with variations. The most appropriate genetic 
model for SBW is a minor effect polygenic model, and it is also the trait 
most affected by environmental effects. We speculate that these genes 
may collectively determine the formation of SBW. However, in genetic 
studies, strong mutations may lead to larger phenotypic differences and 
are therefore widely prioritized. We found that 3 genes had codons that 
changed to "stop codons" (stopgain), and 4 genes had non-frameshift 
deletions or insertions. Among them, the Gbar_D01G023430 gene 
showed dominant expression during embryo sac development. It en
codes the LAC4 protein, which has laccase activity and has been 
confirmed to be involved in lignin synthesis and the regulation of cell 
wall biosynthesis (Blaschek et al., 2023). It is speculated that this gene 
may be a key regulator of seed cell wall development. Transcriptomics 
can provide comprehensive gene expression information. We analyzed 
two transcriptomic datasets from SRA database with significant differ
ences in LP (Duan et al., 2022; Zhao et al., 2022), and screened differ
entially expressed genes with a threshold of |log2 (FoldChange)| > 1 and 
P-value < 0.01 (Table S17, Fig. 6A-D). In the mapping of LP, the total 
physical length of the 3 QTL intervals associated with LP was 1.10 Mb, 
and we obtained 82 genes (Table S16), among which 11 differentially 
expressed genes were identified as candidate genes (Fig. 6E). The results 
showed that the Gbar_A13G003180 and Gbar_A13G003290 genes had 
the most significant differences (Fig. 6F). The former belongs to the 
SWI2/SNF2 protein plant-specific subfamily and encodes chromatin 
remodeling protein (DRD1), which regulates the methylation of plant 
promoters (Dong et al., 2011). The latter encodes ADP-glucose pyro
phosphorylase (APL3), which is the first rate-limiting step in catalyzing 
starch biosynthesis (Veyres et al., 2008). In addition, the 

Gbar_A13G003170 and Gbar_A13G003350 genes showed differential 
expression in the 5 DPA sample (Fig. 6F). The former encodes DNA 
methyltransferase CMT3, and the latter encodes the RAD protein 
belonging to the MYB gene family. Both have been demonstrated to 
participate in plant growth and development. We speculated that these 
candidate genes may play similar biological roles in the formation of LP. 

3.13. Stable QTL haplotype analysis and molecular marker-assisted 
breeding validation 

Stable QTLs were important genetic loci that regulate target traits 
and serve as major-effect QTLs. The nearby markers of stable QTLs have 
high practical value in molecular marker-assisted breeding. We focused 
on studying stable QTLs across multiple environments, namely 
qLP_A13_1, qLP_D06_1, qLP_D09_1, and qSBW_D01_2. Haplotype analysis 
was performed using bin markers at the ends of the QTLs. The geno
typing of bin markers revealed significant phenotypic differences among 
different haplotypes in the RIL population, which corresponded to the 
positive or negative additive effects of the QTLs. To validate whether the 
genotyping markers could be used for selecting target traits in other 
materials, we utilized a natural population of 287 high-depth rese
quenced sea island cotton accessions for validation (Table S18). The 
results showed that materials carrying favorable allelic variants had 
higher LP. Compared to materials without the favorable alleles, mate
rials carrying qLP_A13_1 exhibited a significant increase in LP by 5.48% 
and 5.33% (Fig. 6G, H), materials carrying qLP_D06_1 showed a slight 
increase in LP by 1.23% and 0.53%, but the improvement effect was not 
significant (Fig. 6I, J), materials carrying qLP_D09_2 had a highly sig
nificant increase in LP by 3.46% and 3.47% (Fig. 6K, L). Additionally, 
materials carrying both qLP_A13_1 and qLP_D09_2 showed a highly 

Fig. 6. Identification and analysis of stable QTLs for yield-related traits in sea island cotton. (A) Differentially expressed genes between the 5917 and Pima S-7 lines’ 
ovules of 0 DPA are shown on the volcano plot. (B) Differentially expressed genes between the 5917 and Pima S-7 lines’ fibers of 5 DPA are shown on the volcano 
plot. (C) Differentially expressed genes between the Xinhai 33 and Ashi lines’ ovules of 0 DPA are shown on the volcano plot. (D) Differentially expressed genes 
between the Xinhai 33 and Ashi lines’ fibers of 5 DPA are shown on the volcano plot. (E) Overlapping genes between candidates for LP and differentially expressed 
genes. (F) Heatmap of the expression level of candidate genes in stable QTLs for LP trait during cotton fiber development. (G, H) Comparison of the LP trait for the 
qLP_A13_1 haplotype in both the RIL population and the natural population. (I, J) Comparison of the LP trait for the qLP_D06_1 haplotype in both the RIL population 
and the natural population. (K, L) Comparison of the LP trait for the qLP_D09_1 haplotype in both the RIL population and the natural population. (M, N) Comparison 
of the SBW trait for the qSBW_D01_2 haplotype in both the RIL population and the natural population. (O) Comparison of the LP trait for the qLP_A13_1 and qLP_D09_1 
haplotype in both the RIL population and the natural population. Note: *, **, *** indicates significant levels at P < 0.05, 0.01, 0.001, respectively, determined by 
Student’s t test. 
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significant increase in LP by 6.99%, while materials carrying only 
qLP_A13_1 or qLP_D09_2 had a significant increase in LP by 2.73% 
(Fig. 6O). In terms of SBW, materials carrying qLP_D01_2 exhibited an 
increase in SBW by 6.62% and 3.29%, but the improvement effect 
reached a significant level only with the Gbar_D01_623 marker (Fig. 6M, 
N). These results indicate that the bin markers at both ends of qLP_A13_1 
and qLP_D09_2 can be designed for application in marker-assisted 
breeding. However, in QTLs with small additive effects, even stable 
QTLs may not be suitable for molecular marker-assisted breeding, as 
demonstrated by the unstable markers at the ends of qLP_D06_1 and 
qSBW_D01_2 in this study. 

3.14. Differential analysis of cotton fiber transcriptomes at different 
developmental stages 

Regulation of cotton fiber cell differentiation and development is 
controlled by highly programmed gene networks. To unravel the mo
lecular mechanisms underlying cotton fiber development, comparative 
transcriptome analysis was performed on cotton fibers at different 
developmental stages from the RIL population parents. The statistics 
showed that the average number of clean reads obtained per sample was 
23,993,599, with a Q30 ≥ 94.36%, an average overall alignment rate ≥
95.60%, and an average unique alignment rate ≥ 86.21% (Table S19). 
qRT-PCR analysis of the relative expression levels of 10 genes demon
strated the reliability of the RNA-seq data, which could be used for 
subsequent analysis (Supplementary Figure 1 A, B-K). Clustering and 
correlation analysis revealed that the three biological replicates of the 
samples clustered together (Supplementary Figure 2 A, B). The principal 
component analysis (PCA) yielded the same conclusion as expected 
(Supplementary Figure 2 C). Furthermore, we found that the develop
mental stages of 0–10 DPA between the parents were difficult to 

distinguish, indicating that the gene regulatory networks involved in 
early fiber development were expressed similarly between the parents. 

The immature cotton fibers were measured using the flow-through 
method. The rapid elongation phase of the paternal fibers lasted from 
20 to 25 DPA (days post-anthesis), while the maternal fibers continued 
to elongate until 25–30 DPA, gradually slowing down and eventually 
ceasing elongation, indicating asynchronous elongation phases between 
the parents (Table S21). Differential gene expression analysis revealed 
15,977 upregulated differentially expressed genes and 17,266 down
regulated differentially expressed genes identified in different materials 
at the same developmental stage (Table S20, Fig. 7A). The dynamic 
changes in cotton fiber length helped us better understand the biological 
significance of differential analysis. In the differential analysis of 
different materials at the same developmental stage, a large number of 
genes were downregulated at 15 DPA (Fig. 7B), corresponding to the 
initiation stage of secondary wall synthesis during fiber growth and 
development. By querying the gene expression matrix, it was found that 
the differential expression was caused by increased expression of gene 
06E2062, which aligns with the biological transition. Therefore, we 
speculate that the upregulated genes in fiber 06E2062 at 15 DPA may be 
key genes regulating the initiation of secondary wall development. In 
the differential analysis of the same material at different developmental 
times, a significant increase in differentially expressed genes was 
observed in the poor-quality fiber 06E2062 at 20–25 DPA, while the 
high-quality fiber Xinhai 21 exhibited a similar number of differentially 
expressed genes at 25–30 DPA (Fig. 7D). Therefore, we hypothesize that 
the developmental stage of 25 DPA is a critical period for exploring the 
transition mechanism from fiber elongation phase to secondary wall 
thickening phase. Through KEGG enrichment analysis, differentially 
expressed genes in 15 DPA fiber development were significantly 
enriched in pathways such as starch and sucrose metabolism, amino 

Fig. 7. Identification and analysis of candidate genes during secondary cell wall development in G. barbadense. (A) DEGs between the lines Xinhai 21 and 06E2062 at 
different stages of fiber development. Note: Around the arrows are the numbers indicating the number of genes differentially expressed for the respective comparison. 
Red: upregulation; Blue: downregulation. (B, D) Differentially expressed genes between the Xinhai 21 and 06E2062 lines’ fibers of 15 or 25 DPA are shown on the 
volcano plot. (C, E) KEGG pathway functional classification of DEGs at 15 or 25 DPA between the lines Xinhai 21 and 06E2062. (F) Heatmap of the expression levels 
of candidate genes involved in secondary wall development during cotton fiber development. 
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sugar and nucleotide sugar metabolism, and glycolysis/gluconeogenesis 
(Table S22, Fig. 7C); differentially expressed genes in 25 DPA fiber 
development were significantly enriched in pathways such as starch and 
sucrose metabolism, flavonoid biosynthesis, phenylalanine metabolism, 
glycerophospholipid metabolism, and citric acid cycle (Table S22, 
Fig. 7E), which play important roles in plant secondary wall synthesis. 
By taking the intersection of the differentially enriched genes in the five 
common pathways between the two stages, we obtained 66 candidate 
genes, among which 11 genes were enriched in three different pathways, 
with the most enrichment in starch and sucrose metabolism 
(map00500), followed by amino sugar and nucleotide sugar metabolism 
(Fig. 7F). These metabolic pathways provide the basic materials and 
energy required for synthesizing secondary walls in fibers, directly or 
indirectly affecting the development process of secondary walls. 
Therefore, the 66 genes that were commonly enriched may play 
important roles in the metabolic network of fiber secondary wall 
development. 

3.15. Identification of key genes related to fiber elongation through 
WGCNA analysis 

In the weighted gene co-expression network analysis (WGCNA), 
multiple iterations indicated that a (soft-thresholding power) β = 13 
helped to reduce noise and minimize the impact in the network 
(Fig. 8A). When the module correlation was ≥ 75%, they were merged 
into the same module, and a total of 13 distinct expression modules were 
identified in this study (Fig. 8B). Analysis using the LinkET package 
showed that the turquoise, green, and black expression modules had the 
highest and highly significant correlations with the phenotypes, with 
correlation coefficients of 0.82, 0.71, and 0.41, respectively. These 
modules contained 13,949, 1977, and 284 genes, respectively (Fig. 8C). 
GO enrichment analysis revealed that the MEturquoise module was 
enriched in 269 biological processes, cellular components, and molec
ular functions (Table S23, Fig. 8D). The MEgreen module was enriched 
in 41 biological processes, 9 molecular functions, and 25 cellular com
ponents (Table S23, Fig. 8E). The MEblack module did not show 

Fig. 8. WGCNA analysis of different developmental stages’ fibers in G. barbadense to identify candidate genes involved in rapid elongation. (A) Determination of soft 
threshold of weighted gene co-expression network analysis. (B) Cluster tree showing WGCNA-identified co-expression modules. (C) Coexpression correlation analysis 
of co-expression modules in G. barbadense. (D) MEturquoise modules GO enrichment analysis. (E) MEgreen modules GO enrichment analysis. (F) MEblack modules 
GO enrichment analysis. (G) Overlapping genes between candidates for MEturquoise modules and differentially expressed genes in rapid elongation. (H) Heatmap of 
the expression levels of candidate genes involved in fiber rapid elongation during cotton fiber development. 
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enrichment in cellular components but was enriched in 75 processes 
related to plant hormone response, environmental or biotic stimulus 
response, and signal transduction and release in biological processes. It 
was also enriched in isomerase activity and oxidoreductase activity in 
molecular functions (Table S23, Fig. 8F). We speculate that this module 
may play an important role in the biological processes of fiber cell 
response to stimuli and hormone signaling. 

To explore the genes related to fiber elongation, we selected DEGs 
during the rapid elongation stage of fiber development (10–25 DPA) for 
further analysis. A total of 345 genes were identified as DEGs at four 
different time points. Among them, 40 genes overlapped with the 
MEturquoise expression module identified in the WGCNA analysis, and 
were considered as hub genes for fiber elongation in sea island cotton 
(Fig. 8G). Based on the heatmap of gene expression and differential 
expression fold change (Fig. 8H), we identified well-known cotton fiber 
development-related genes, such as Gbar_D02G021860 (Alpha-2,4 
tubulin, TUA2), Gbar_D08G001690 (AP2/ERF transcription factor fam
ily protein, ERF transcription factor), Gbar_A06G007510 (Beta-galacto
sidase, BGAL1), and Gbar_A10G007490 (Glycerophosphodiester 
phosphodiesterase, GDPD1), which have been cloned in upland cotton 
research (Wen et al., 2023). Importantly, we also identified two genes, 
Gbar_D08G020910 and Gbar_D08G020920, that encode the SmD1a 
protein, which may play a minor role in RNA splicing and indirectly 
promote post-transcriptional gene silencing (PTGS) (Elvira-Matelot 
et al., 2017). Additionally, the Gbar_A06G007900 gene, encoding a 
stretch-activated ion channel on the plasma membrane, was identified. 
In Arabidopsis, the MSL10 gene, which is homologous to 
Gbar_A06G007900, is located in the plasma membrane and is mainly 
expressed in root tips, shoot tips, and vascular tissues. It enhances cell 
expansion and regulates cell apoptosis (Veley et al., 2014). These genes, 
which have not been functionally validated in cotton, are expected to 
provide new gene resources for improving fiber quality. 

3.16. Identification and analysis of candidate genes in stable QTL for 
fiber quality traits 

Based on the positioning results of fiber quality traits, we selected 5 
stable QTLs associated with FL, 4 with FS, and 3 with FM for candidate 

gene mining. A total of 578 genes were found within the QTL intervals 
(Table S24). Combined with transcriptome analysis, 154 differentially 
expressed genes were identified, of which 6 genes showed significant 
differential expression at 8 different stages (Fig. 9A, B). To effectively 
exclude false positive differentially expressed genes, we analyzed the 6 
significantly different genes together with another set of transcriptome 
data published in our project. Among them, 5917 materials had similar 
fiber quality to Xinhai 21, and Pima S-7 had similar fiber quality to 
06E2062. Therefore, we excluded 3 genes that were likely false posi
tives. Gbar_A10G025470, Gbar_D04G007260, and Gbar_D04G007460 
were selected as candidate genes for further analysis (Fig. 9C, D, E). 
Gbar_A10G025470 had the highest differential multiple and encoded a 
tyrosine protein kinase (Pkinase_Tyr), which belonged to the protein 
kinase family and was homologous to the Arabidopsis gene At2g40270. It 
was an important cell membrane receptor that may participate in the 
regulation of programmed cell apoptosis (Ascencio-Ibánez et al., 2008). 
Gbar_D04G007260 was homologous to the Arabidopsis gene PLC2 
(AT3G08510) and encoded a phospholipase specific for phosphatidyli
nositol, which catalyzed the hydrolysis of phosphatidylinositol 4, 
5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, 
participating in the biosynthesis and signal transduction of auxin, and 
regulating the development of male and female gametophytes (Li et al., 
2015b). Gbar_D04G007460 encoded a histidine acid phosphatase pro
tein, serving as a 5-phosphatidylinositol and 6-phosphatidylinositol 
phosphatase, regulating the levels of inositol pentakisphosphate 
(InsP5) and inositol hexakisphosphate (InsP6) in cells. In addition, for 
FL, Gbar_D04G006250, Gbar_D04G006950, and Gbar_A10G025320 were 
selected as candidate genes (Tables S20, 24, Fig. 9F, G, H). Among them, 
Gbar_D04G006250 encoded a protein located in the cortex, which 
played a role in the stability of cortex cells and was necessary for the 
formation of cortex cell filaments (Froelich et al., 2011). From a bio
logical perspective, we speculated that this gene might be a key gene for 
maintaining the stability and polar elongation of cotton fiber cells. 
Gbar_D04G006950 encoded a lipid transfer protein (LTP), in upland 
cotton, Wangzhen Guo’s team identified a lipid transfer protein GhLTP4 
that could bind ceramides (Cers), confirming its involvement in Cers 
transport, which could increase Cers content and activate the auxin 
response pathway, thereby promoting cotton fiber elongation and 

Fig. 9. Identification and analysis of stable QTLs for fiber quality traits in G. barbadense. (A) Overlapping genes between candidates for stable QTLs for fiber quality 
traits and differentially expressed genes. (B) Heatmap of differentially expressed genes within stable QTL intervals for fiber quality traits. (C-J) Expression pattern 
analysis of eight key candidate genes. (K) The genetic architecture of qFL_D04_1 in G. barbadense. 
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significantly improving fiber quality (Duan et al., 2023). Whether this 
gene has a similar function in sea island cotton needs further verifica
tion. In terms of FS, Gbar_A04G012910 was almost not expressed during 
the elongation period of fibers, but showed significant upregulation and 
differential expression at 25 DPA in the paternal parent 06E2062 and 30 
DPA in the maternal parent sea island cotton (Fig. 9I). It encoded 
caffeoyl-CoA O-methyltransferase 1 (CCoAOMT1) in the lignin biosyn
thesis pathway. Previous studies have shown that CCoAOMT1 catalyzes 
the synthesis of phenolic compounds, converting caffeoyl-CoA to 
feruloyl-CoA and 5-hydroxyferuloyl-CoA to sinapoyl-CoA, playing a 
critical role in cell wall formation (Vanholme et al., 2013). In addition, 
our other study on cotton fibers showed that when the HCT gene related 
to lignin synthesis was silenced, the expression of CCoAOMT1 gene was 
downregulated and the number of trichomes on the plant epidermis was 
significantly reduced (Zheng et al., 2024). Therefore, we speculate that 
this gene may be involved in important processes of cotton fiber 
development. In terms of FM, we identified a gene, Gbar_D06G021300, 
which was homologous to AtRHD3 in Arabidopsis and was essential for 
regulating cell expansion and normal root hair development. Addition
ally, we found that Gbar_D06G021300 showed differential expression at 
0 DPA and 5 DPA (Fig. 9J). Based on the developmental characteristics, 
fiber cells at 0–5 DPA form the final fiber diameter. Therefore, we 
speculate that this gene may be a candidate gene regulating cotton fiber 
thickness, thereby affecting the FM. 

3.17. The genetic basis and breeding of qFL-D04-1 

In the annotation of parental variation, 178 genes were annotated to 
the variant loci, with 8 different types of exonic variants annotated, 
including 299 nonsynonymous mutations, 17 frameshift deletions/in
sertions, 11 non-frameshift deletions/insertions, and 13 stop codon 
mutations (Table S24). It is worth noting that 75% of the annotations 
were from the confidence interval of qFL-D04–1, significantly higher 
than other QTLs. The loci were mapped onto the physical map, and the 
interval of 9.5–13.7 Mb on chromosome D04 was obtained as the con
fidence interval. Through comparison with the reference genome, we 
found that all variant loci were derived from the paternal parent 
06E2062, indicating that the paternal parent has been subjected to 
sustained positive selection pressure at this locus, resulting in the 
preservation of the variant loci. Another interesting point is that the 
positive additive effect of qFL-D04–1 suggests that the beneficial allele 
comes from the paternal parent 06E2062, while the maternal parent did 
not contribute to the aggregation of this excellent allele, indicating that 
the aggregation of this locus has an improvement effect on FL. We 
analyzed the genetic basis of the excellent allele of qFL-D04–1 in 
different sea island cotton breeding processes using high-depth rese
quencing data of 76 accessions (63 Xinjiang approved varieties and 13 
Pima cotton varieties) (Fig. 9K). By analyzing the genetic composition of 
different materials using 20 bin markers, the study showed that only a 
subset of early Pima cotton materials aggregated the excellent allele, but 
it was widely aggregated in subsequent breeding with different series of 
materials. In the history of Chinese sea island cotton breeding, only 
Xinhai 13 and Xinhai 18 aggregated the excellent allele before 2010, 
while 44.44% of the varieties aggregated the excellent allele after 2010, 
indicating that this excellent allele has gradually been utilized in mod
ern breeding. Interestingly, Pima cotton retained the entire genetic basis 
of this locus, but the excellent allele genetic basis of 9.5–10.5 Mb has 
been more widely utilized in Chinese sea island cotton breeding. 
Approximately 25% of the varieties carried the excellent allele genetic 
basis of 9.5–10.5 Mb in early breeding, while about 92.6% of the 
approved varieties carried this excellent allele genetic basis in recent 
years. Combining the pedigree and phenotypic evolution of Xinhai 21, it 
was found that materials carrying the excellent allele genetic basis of 
10.5–13.7 Mb have a longer growth period. Therefore, we speculate that 
fiber length and growth period share the genetic basis of qFL-D04–1, and 
there may be a linked inheritance between the two traits. This linkage 

was broken in the breeding process in China around 2010, and the in
terval of 9.5–10.5 Mb may have an independent effect on improving 
fiber length, while the interval of 10.5–13.7 Mb may still have a linked 
inheritance between fiber length and growth period that has not been 
broken. 

4. Discussion 

4.1. Fundamental elements in trait analysis: phenotypic variation, 
interrelationships, and genetic models 

Genetic research heavily relies on suitable genetic populations. 
Parents with significant phenotypic differences provide a broader ge
netic background for the RIL population, and statistical analysis showed 
that the RIL population in this study exhibited abundant genetic di
versity and phenotypic variation, providing more genetic information 
and statistical power for phenotypic analysis. The correlation analysis 
and estimated genetic parameters in this study were similar but not 
identical to previous research results. Strong correlations were observed 
among the same types of traits (Wang et al., 2020; Zhang et al., 2023, 
2020), but there was no significant negative correlation between yield 
traits and quality traits. Agronomic and yield traits exhibited larger 
variation coefficients and were more susceptible to environmental in
fluences, while LP and fiber quality traits were predominantly regulated 
by genotypes, showing higher broad-sense heritability (Fan et al., 2018; 
Fang et al., 2021), although fiber elongation lacks heritability. Pheno
typic analysis reveals the interrelationships and genetic parameters 
among traits, which, although insufficient to explain deep-seated ge
netic questions, serve as important starting points and directions for 
dissecting genetic foundations and play crucial roles in genetic research. 
From a breeding perspective, strongly correlated traits may require 
combined selection to maintain or enhance the expression of these 
beneficial traits. Conversely, weakly correlated traits may need separate 
optimization to maximize the performance of each trait. From a genetic 
analysis perspective, the correlation analysis among traits indicates their 
interrelationships, suggesting shared genetic genes or regulatory path
ways between highly correlated traits. In different environments, most 
traits showed strong positive correlations, indicating the close connec
tion between the stability of these traits and their genetic basis, which 
was supported by higher broad-sense heritability. Importantly, the 
prediction of the most suitable genetic model provides reference infor
mation for the genetic basis of quantitative traits, helping extract true 
genetic information related to traits from complex data (Kearsey and 
Pooni, 2020). In summary, phenotypic analysis provided fundamental 
information about the RIL population, serving as a starting point for 
optimizing breeding strategies and dissecting genetic mechanisms, of
fering valuable clues and insights. 

4.2. QTL localization and genetic basis analysis revealed by high-density 
genetic map of Sea Island Cotton 

Next generation sequencing (NGS) technology has become an 
important tool in current crop genetic breeding research (Song et al., 
2023), providing genome-wide SNP markers. The development of SNP 
markers relies on genome sequencing and assembly. With the rapid 
development of sequencing technologies, the cotton genome has un
dergone three iterations of assembly (Wen et al., 2023), significantly 
improving genome integrity and continuity (Chang et al., 2024). So far, 
multiple high-density genetic maps have been constructed for upland 
cotton within and between species, elucidating the genetic basis of 
various agronomic traits and identifying important candidate genes (Gu 
et al., 2020; Zhang et al., 2019, 2020). In contrast, the genetic analysis of 
sea island cotton has been limited. In 2018, our team utilized GBS 
technology for genotyping and constructed the first high-density genetic 
map for sea island cotton, which was used to locate QTLs related to fiber 
traits (Fan et al., 2018). Until the present time, Professor Tianzhen 
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Zhang’s team investigated the structural variations contributing to the 
formation and differentiation of cultivated tetraploid cotton using 
Tanguis, Karnak, VIR29TV, and Xinhai 21 as parents. They constructed 
three high-density genetic maps within these populations using 4612, 
3177, and 3488 bin markers, respectively, and identified 299 QTLs 
associated with agronomic traits, yield, and quality (Jin et al., 2023). 
Compared to the genetic maps in this study, the RIL population and 
parental sequencing in our study had higher depth, more pure and 
polymorphic loci, and a total of 5295 bin markers in the figure. This 
effectively increased the coverage and saturation of the genetic map, 
making it the highest-density genetic map known for sea island cotton 
within a single population. This lays a solid foundation for subsequent 
QTL mapping and gene discovery. 

Compared with previous studies, most early research used inter- 
species or intra-species populations of upland cotton, and the QTL 
mapping results were not integrated into the physical genome map (Said 
et al., 2015). Therefore, it is difficult to compare the results of this study 
with previous studies. In this study, we collected QTL mapping results 
that have been integrated into the physical map as comprehensively as 
possible, with a focus on the association analysis results of six published 
natural populations of sea island cotton. A total of 57 genetic loci related 
to agronomic traits, yield, and fiber quality were found to overlap or be 
adjacent to the QTL regions reported by previous studies, including 9 
related to agronomy, 20 related to yield traits, and 28 related to fiber 
quality (Table S25). At the same time, we identified 46 QTLs that con
tained loci obtained from previous association analysis, including 4 
related to agronomy, 21 related to yield traits, and 21 related to fiber 
quality (Table S25) (Jin et al., 2023; Wang et al., 2022c; Yu et al., 2021; 
Zhao et al., 2022). For example, the qFFSH_D07_1 locus associated with 
FFSH has been identified in multiple independent studies and has been 
well confirmed as a locus regulating cotton first fruit spur height. The 
protein proline to serine variation at position 113 of the 
Gbar_D07G011870 gene’s fourth exon is the genetic basis for the for
mation of different phenotypes (Si et al., 2018; Wen et al., 2021), which 
is consistent with our study. It is worth noting that we localized this 
locus within a range of 0.94 Mb, which is not as accurate as the asso
ciation analysis (0.35 Mb), but it is significantly better than the BSA-seq 
localization results (2.3 Mb). Most of the QTLs obtained in this study 
overlap with previous studies, indicating a high level of confidence in 
the QTLs obtained in this study. Importantly, 17 QTL clusters discovered 
in this study provide a reasonable explanation for the phenotypic cor
relation results. Based on the additive effects of the QTLs forming the 
QTL clusters, it was found that the additive effects of QTL clusters 
related to FL and FS were consistent. qClu-A06–2, qClu-A10–1, 
qClu-A10–2, and qClu-D04–1 may be the genetic basis for the highly 
significant negative correlation between FM and FL and FS. qClu-D01–2, 
qClu-D12–1, and qClu-D13–2 may be the genetic basis for breaking the 
negative correlation between quality traits and yield traits. These results 
not only confirmed that phenotypic analysis provided clues for deci
phering the genetic basis but also provided another perspective to prove 
the reliability of the QTLs obtained in this study. Previous studies have 
shown that cotton fiber QTLs were unevenly distributed in the At and Dt 
subgenomes, with more loci regulating fiber development in the Dt 
subgenome than in the At subgenome (He et al., 2021). In this study, the 
distribution of QTLs related to FS in the Dt subgenome was about twice 
that in the At subgenome, which was similar to previous studies. How
ever, the distribution of QTLs related to FL in the At subgenome was 
about twice that in the Dt subgenome, which was opposite to previous 
studies. Interestingly, this result was consistent with the breeding his
tory of Xinjiang, where it was generally believed that sea island cotton in 
Xinjiang had a problem of excessive FL and insufficient FS, indicating 
that early breeding focused on FL and overlooked FS (Zheng et al., 
2022). We speculated that this may be fundamentally due to breeders 
focusing on breeding in the At subgenome and overlooking the loci 
regulating FS in the Dt subgenome. 

4.3. Molecular mechanisms and key genes involved in the development of 
excellent traits 

Identification of functional genes within QTL intervals is crucial as 
they are considered key factors that directly regulate or influence target 
traits. In crops, the presence of genetic linkage drag is one of the 
important factors restricting simultaneous improvement of important 
economic traits. In rice, studies based on rice QTL maps have shown that 
approximately 25% of the rice genome carries potential genetic linkage 
drag (Wei et al., 2021). In cotton, genetic linkage drag often leads to 
negative correlations between fiber quality and yield-related traits, with 
the negative correlation between FL, FS, and LP being the most typical 
(Huang et al., 2021). This severely restricts the simultaneous improve
ment of cotton fiber quality and yield. The advancement of modern 
molecular biology techniques has provided researchers with 
high-precision genome editing tools, allowing for precise modification 
of alleles and effectively reducing adverse effects. This breakthrough in 
overcoming genetic linkage drag enables researchers to design ideal 
crops. Therefore, the identification of functional genes within QTL in
tervals is of paramount importance. 

In agronomic traits, the Gbar_D07G011870 gene, encoding the TFL1 
protein, was a functional gene that regulateed the height of the first fruit 
spur branch. However, in a recent study by the Wang lab, it was found 
that a single nucleotide mutation in the GaTFL1 gene led to the loss of 
gene function due to the deletion of amino acids at the RNA 5′ splice site, 
revealing a novel mechanism by which TFL1 gene mutations altered 
cotton structure (Liu et al., 2024). The plant cell wall played a critical 
role in providing support and protection within the plant body, and its 
synthesis rate directly affected plant cell elongation. The 
Gbar_D08G025710 gene, which promoted cell wall formation in Arabi
dopsis, was involved in regulating root cap cell maturation and shedding 
(Bennett et al., 2010). Therefore, we speculated that this gene may be 
closely associated with plant height development. In yield-related traits, 
two LAC laccase genes (Gbar_A13G003320 and Gbar_D01G023430) had 
been identified as candidate genes for SBW. Among them, 
Gbar_D01G023430 encoded the LAC4 protein, and a study had shown 
that GhLAC4 was involved in G-lignin biosynthesis. GhmiR397b was 
involved in the formation of lignin in cotton fibers, and GhLAC4 was a 
target gene of miR397b that regulated cotton fiber development (Ding 
et al., 2017). Another study proposed a model in which GhLAC4 regu
lated the triacylglycerols (TAG) biosynthetic pathway, elucidating the 
functional role of GhLAC4 in lipid metabolism in cotton seeds (Zhong 
et al., 2023). We speculated that Gbar_D01G023430 might play a similar 
role in sea island cotton, promoting the formation of SBW. Four genes 
had been identified as candidate genes for LP, and we proposed two 
different regulatory pathways. The first pathway involved MYB tran
scription factors, and there was ample evidence for the regulation of 
cotton fiber development by MYB transcription factors (Wen et al., 
2023). Among them, Gbar_A13G003350 encoded the MYB2 transcrip
tion factor, and the mechanism of GaMYB2 gene regulation in fiber 
initiation development was validated in a study by Xiaoya Chen in 2004, 
making it one of the earliest transcription factors identified to partici
pate in fiber initiation development (Wang et al., 2004). The second 
pathway involved epigenetic regulation. In upland cotton, Guangyu 
Chen used Xu142 and its lintless mutant Xu142fl to systematically 
analyze the DNA 5mC and 6 mA changes at the genomic level in ovules 
and fibers during the fiber initiation stage, demonstrating the abundant 
DNA methylation in ovules during fiber initiation and providing a pre
liminary understanding of the mechanisms of DNA methylation and 
related epigenetic modifications in cotton fiber initiation development 
(Qin et al., 2022). Gbar_A13G003170 and Gbar_A13G003180 encoded 
different DNA methyltransferases with methylation-related epigenetic 
regulatory functions. We speculated that they might participate in the 
fiber initiation and differentiation process by regulating DNA methyl
ation levels. 

The molecular mechanism underlying the excellent fiber formation 
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of cotton had been extensively studied. The cotton genetic improvement 
team at Huazhong Agricultural University was highly representative in 
this field. The team first discovered that asymmetric domestication se
lection of the upland cotton subgenome affects the formation of high- 
quality fibers (Wang et al., 2017), and elucidated the genetic basis of 
the evolution of cotton fibers from nonexistence to existence and the 
formation of superior fiber quality in sea island cotton (Wang et al., 
2022b, 2019). Recently, the team had also elucidated the dynamic 
co-regulation mechanism of fiber development and quality formation by 
two subgenomes of the allopolyploid upland cotton, explaining the po
tential of homologous genes from the subgenomes for improving fiber 
quality (You et al., 2023). Candidate genes related to fiber development, 
such as TUA2 (Gbar_D02G021860), BGAL1 (Gbar_A06G007510), ERF 
(Gbar_D08G001690), PLC2 (Gbar_D04G007260), LTP 
(Gbar_D04G006950), and CCoAOMT1 (Gbar_A04G012910), had been 
screened and preliminarily analyzed and confirmed in previous studies 
on cotton fiber development. For example, the Gbar_D04G007260 gene, 
which was associated with cotton fiber cell membrane signal trans
duction, encodes the PLC2 protein. In 2021, the team led by Guanghui 
Xiao revealed that GhPIPLC2D promotes ethylene biosynthesis by 
generating IP3, further promoting cotton fiber elongation development 
(Zhu et al., 2021). The Gbar_D08G001690 gene, which was related to 
secondary cell wall development in fibers, encodes the ERF gene. The 
team led by Xuebao Li from Central China Normal University revealed 
that the AP2/ERF transcription factor GhERF108, together with the 
auxin response factors GhARF7–1 and GhARF7–2, regulates secondary 
cell wall development in cotton fibers through the ethylene-auxin 
signaling crosstalk pathway (Wang et al., 2023). Although most of the 
candidate genes identified in this study have already been elucidated in 
terms of their functions and regulatory networks in fiber development, it 
also demonstrates the reliability of this research work. It is worth noting 
that we had also identified a group of genes that had not been reported 
in cotton fiber development, such as the Gbar_D04G007460 gene, which 
was associated with cell membrane signal transduction or fluidity in 
functional annotation. It had been found to promote cell expansion in 
Arabidopsis and showed significant differential expression in fiber 
development. The Gbar_D04G006250 gene was a protein necessary for 
the formation of bast fibers and played an important role in maintaining 
cell morphology stability. The Gbar_D06G021300 gene was required for 
regulating cell expansion and normal root hair development in Arabi
dopsis. The functional roles of these genes in fibers also need to be 
elucidated and their mechanisms of action clarified. In addition, most of 
the reported genes were derived from upland cotton or Asiatic cotton, 
and although they are orthologous genes of sea island cotton, they 
cannot be equated with having the same biological functions in sea is
land cotton. Cotton development is regulated by complex networks, and 
the same gene may play completely different roles in different cotton 
species. This is another important significance of conducting this study. 

4.4. Genetic analysis and prospects for trait improvement of Sea Island 
cotton in different Cotton Regions 

Due to climate limitations, the cultivation range of sea island cotton 
is relatively narrow. Modern sea island cotton varieties are mainly 
derived from three gene pools: Egyptian, American, and Central Asian 
types (Abdullaev et al., 2017). Xinjiang is the only production area for 
sea island Cotton in China. Since its first introduction in the late 1940 s, 
Central Asian Egyptian sea island cotton had been selected as the core 
variety, incorporating the unique ecological environment of Xinjiang. 
This had resulted in the development of unique Xinjiang-bred sea island 
cotton germplasm resources (Zhang et al., 2023; Zheng et al., 2022). 
Represented by American Pima cotton, American-type sea island cotton 
breeding began in 1910. To meet market demand and agricultural 
conditions, Pima cotton varieties such as Pima S, Pima DP, Pima PHY, 
and Pima HA have been developed (Zhang and Abdelraheem, 2017). 
These varieties not only have strong advantages in variety breeding but 

also stand out in the cotton industry and textile manufacturing. 
Although China had collected a large number of Pima germplasm re
sources, the utilization efficiency had been relatively low due to the 
limited understanding of the genetic basis of dominant traits (Fang et al., 
2021; Zhao et al., 2022). In this study, the genetic composition and locus 
segregation patterns of the breeding backbone parents from the two 
major cotton regions were revealed using high-density SNP markers. 
Eight important trait loci with excellent alleles were identified, indi
cating that a large number of outstanding Pima cotton alleles are not 
present in the breeding backbone parents in China, providing greater 
utilization potential. The development of bin markers based on SNP 
markers not only covers a wider range but also effectively eliminates 
false positive SNPs, providing strong support for revealing the trans
mission patterns of genetic material. In the natural population of sea 
island cotton, we verified that bin markers at both ends of qLP_A13_1 and 
qLP_D09_1 can be designed as bin markers for breeding purposes. To 
reveal the genetic basis of the excellent allele locus qFL-D04–1 in sea 
island cotton breeding, we analyzed the genetic composition and pedi
gree of approved varieties in different cotton regions. We found that the 
excellent allele variation of qFL-D04–1 had undergone strong positive 
selection. This locus was overlooked in the early stages of variety 
breeding for some reason, but in the past decade, the excellent allele 
variation of qFL-D04–1 had been effectively utilized. The 1 Mb region 
(9.5–10.5 Mb) was carried by almost all new varieties, demonstrating 
the improvement effect of this locus. Although this study provides pre
liminary guidance for production practices, it is not feasible to rely 
solely on individual or a few SNPs for molecular marker-assisted 
breeding. It is imperative to utilize the American-type gene pool re
sources of sea island cotton to improve the breeding process in China. 
Further work is needed to construct larger populations and analyze the 
genetic basis of excellent agronomic traits, laying the foundation for a 
better understanding of the adaptive evolution and trait improvement of 
sea island cotton. 

5. Conclusions 

The present study constructed a RIL population using the female 
parent Xinhai 21 and the male parent 06E2062. Twelve different 
phenotypic traits were investigated in five environments, systematically 
analyzing the correlation and genetic characteristics among these traits. 
The study provided preliminary insights into the combined effects of 
genetics and environment on the phenotype of cotton. Through whole- 
genome resequencing, a high-density intraspecific linkage map of sea 
island cotton was constructed. Used the ICIM interval mapping method, 
169 QTLs were detected for eight traits. Through cotton fiber RNA-seq 
data, the dynamic changes and differentially expressed genes in fiber 
gene expression during different developmental stages were revealed. 
Importantly, 26 candidate genes potentially involved in regulating 
target traits were identified from stable QTLs, and their potential bio
logical processes were preliminarily elucidated. Furthermore, two bin 
markers related to LP were validated as potential breeding markers, and 
the aggregation process of the excellent allele site qFL_D04_1 in the 
history of Chinese sea island cotton breeding was discussed. These 
research findings further elucidated the genetic basis of important traits 
in sea island cotton, providing a theoretical foundation for future gene 
function validation and bio-breeding of sea island cotton. 
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